Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula...Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.展开更多
Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake...Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.展开更多
Crimean-Congo hemorrhagic fever(CCHF)is a zoonotic disease caused by the CCHF virus(CCHFV),which is primarily transmitted by ticks(Lorenzo Juanes et al.2023).It is an emerging disease that occurs sporadically in Afric...Crimean-Congo hemorrhagic fever(CCHF)is a zoonotic disease caused by the CCHF virus(CCHFV),which is primarily transmitted by ticks(Lorenzo Juanes et al.2023).It is an emerging disease that occurs sporadically in Africa,Asia,and Europe,with a high morbidity and mortality rate,as high as 30%in humans(Ceylan et al.2013).CCHFV,belonging to genus Nairovirus,family Bunyaviridae,was first identified in the Congo in the 1960s.展开更多
Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the e...Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.展开更多
Background:Diarrhea is a major cause of morbidity and mortality in young calves,resulting in considerable economic loss for dairy farms.To determine if some gut microbes might have resistance to dysbiotic process with...Background:Diarrhea is a major cause of morbidity and mortality in young calves,resulting in considerable economic loss for dairy farms.To determine if some gut microbes might have resistance to dysbiotic process with calf diarrhea by dictating the microbial co-occurrence patterns from birth to post-weaning,we examined the dynamic development of the gut microbiota and diarrhea status using two animal trials,with the first trial having 14 Holstein dairy calves whose fecal samples were collected 18 times over 78 d from birth to 15 d post-weaning and the second trial having 43 Holstein dairy calves whose fecal samples were collected daily from 8 to 18 days of age corresponding to the first diarrhea peak of trial 1.Results:Metataxonomic analysis of the fecal microbiota showed that the development of gut microbiota had three age periods with birth and weaning as the separatrices.Two diarrhea peaks were observed during the transition of the three age periods.Fusobacteriaceae was identified as a diarrhea-associated taxon both in the early stage and during weaning,and Clostridium_sensu_stricto_1 was another increased genus among diarrheic calves in the early stage.In the neonatal calves,Prevotella_2(ASV4 and ASV26),Prevotella_9(ASV43),and Alloprevotella(ASV14)were negatively associated with Clostridium_sensu_stricto_1(ASV48),the keystone taxa of the diarrhea-phase module.During weaning,unclassified Muribaculaceae(ASV28 and ASV44),UBA1819(ASV151),Barnesiella(ASV497),and Ruminococcaceae_UCG-005(ASV254)were identified being associated with non-diarrheic status,and they aggregated in the non-diarrhea module of co-occurrence patterns wherein unclassified Muribaculaceae(ASV28)and Barnesiella(ASV497)had a direct negative relationship with the members of the diarrhea module.Conclusions:Taken together,our results suggest that the dynamic successions of calf gut microbiota and the interactions among some bacteria could influence calf diarrhea,and some species of Prevotella might be the core microbiota in both neonatal and weaning calves,while species of Muribaculaceae might be the core microbiota in weaning calves for preventing calf diarrhea.Some ASVs affiliated with Prevotella_2(ASV4 and ASV26),Prevotella_9(ASV43),Alloprevotella(AVS14),unclassified Muribaculaceae(ASV28 and ASV44),UBA1819(ASV151),Ruminococcaceae_UCG-005(ASV254),and Barnesiella(ASV497)might be proper probiotics for preventing calf diarrhea whereas Clostridium_sensu_stricto_1(ASV48)might be the biomarker for diarrhea risk in specific commercial farms.展开更多
Objective:To explore the anti-aging effects of chlorogenic acid(CGA)and the underlying mechanisms based on a Caenorhabditis elegans(C.elegans)model.Methods:The anti-agingactivityofCGAwasstudied basedon thebodylength,e...Objective:To explore the anti-aging effects of chlorogenic acid(CGA)and the underlying mechanisms based on a Caenorhabditis elegans(C.elegans)model.Methods:The anti-agingactivityofCGAwasstudied basedon thebodylength,exercisebehavior,lipofuscin content,antioxidative stress ability,swallowing frequency,body-bending frequency,and head-swinging ability of C.elegans.Through DAF-16 nuclear translocation and SOD-3-GFP fluorescence experiments,the effects of CGA on ROS levels,antioxidant enzyme activities,MDA content,mutant-strain lifespan,and anti-aging molecular signaling pathways were explored,as well as the underlying mechanisms.Results:CGA improved multiple indices of the nematode:body length was increased(all P<0.001),head-swing frequency and body-bending frequency were increased(all P<0.05),nematode longevity was prolonged(P=0.0021),lipofuscin deposition in nematodes was slowed down(all P<0.001),the chemotaxis index was improved(P=0.0012),ROS levels were reduced(all P<.001),and SOD activity and MDA content were reduced(SOD:P=0.0017 between the low-concentration group and the control group,P<.001 between the high-concentration and medium-concentration groups and the control group;MDA:P=0.0135 between the low-concentration group and the control group,and P<0.001 between the high-concentration and medium-concentration groups and the control group).In addition,CGA also activated the DAF-16 transcription factor,promoted DAF-16 nuclear translocation under oxidative stress conditions(both P<0.001 between the high-concentration and medium-concentration groups and the control group),and increased SOD-3 gene expression in nematodes(all P<0.001).Conclusion:CGA plays an anti-aging role in C.elegans.The underlying mechanisms include activation of the insulin/IGF-1 signaling pathway and enhancement of DAF-16 activity.This study lays a foundation for further research into the anti-aging effects of CGA.展开更多
Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a hi...Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.展开更多
Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of ...Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.展开更多
Because plant mechanical strength influences plant growth and development,the regulatory mechanisms underlying cell-wall synthesis deserve investigation.Rice mutants are useful for such research.We have identified a n...Because plant mechanical strength influences plant growth and development,the regulatory mechanisms underlying cell-wall synthesis deserve investigation.Rice mutants are useful for such research.We have identified a novel brittle culm 25(bc25)mutant with reduced growth and partial sterility.BC25 encodes an UDP-glucuronic acid decarboxylase involved in cellulose synthesis and belongs to the UXS family.A single-nucleotide mutation in BC25 accounts for its altered cell morphology and cellwall composition.Transmission electron microscopy analysis showed that the thickness of the secondary cell wall was reduced in bc25.Monosaccharide analysis revealed significant increases in content of rhamnose and arabinose but not of other monosaccharides,indicating that BC25 was involved in xylose synthesis with some level of functional redundancy.Enzymatic assays suggested that BC25 functions with high activity to interconvert UDP-glucuronic acid(UDP-Glc A)and UDP-xylose.GUS staining showed that BC25 was ubiquitously expressed with higher expression in culm,root and sheath,in agreement with that shown by quantitative real-time(q RT)-PCR.RNA-seq further suggested that BC25 is involved in sugar metabolism.We conclude that BC25 strongly influences rice cell wall formation.展开更多
Recently,increasing evidence suggests that DNA methylation plays a crucial role in fruit ripening.However,the role of DNA methylation in regulating specific traits,such as flavor,remains unclear.Here,we report a role ...Recently,increasing evidence suggests that DNA methylation plays a crucial role in fruit ripening.However,the role of DNA methylation in regulating specific traits,such as flavor,remains unclear.Here,we report a role of DNA methylation in affecting furanone biosynthesis in strawberry.Strawberry quinone oxidoreductase(FaQR)is a key enzyme in furanone biosynthesis.There are four FaQR homologs in strawberry cultivar‘Yuexin’,and one of them,FaQR3,contributes∼50%of FaQR transcripts,indicating a major role of FaQR3 in furanone biosynthesis.Through characterization of levels of DNA methylation and FaQR3 transcript and furanone contents during fruit ripening and after the application of DNA methylation inhibitor,we found that the DNA methylation level of the FaQR3 promoter was negatively correlated with FaQR3 expression and furanone accumulation,suggesting that DNA methylation may be involved in furanone biosynthesis through adjusting FaQR3 expression,and responded to different temperatures consistently.In addition,transient expression of a gene in the RNA-directed DNA methylation(RdDM)pathway,FaAGO4,and enrichment analysis of the 24-nucleotide siRNAs suggested that DNA methylation in the FaQR3 promoter is mediated by the RdDM pathway.Transient RNA interference(RNAi)of FaDML indicated that the demethylation pathway may be involved in regulating furanone accumulation.These findings provide new insights into the role of DNA methylation and demethylation in affecting flavor quality in strawberry during fruit ripening.展开更多
Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) throu...Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.展开更多
Objective: To analyze the application value of surgical nursing in patients with uterine fibroids and diabetes. Method: Sixty diabetic patients who agreed to undergo surgery for uterine fibroids at the Sun Yat-sen Uni...Objective: To analyze the application value of surgical nursing in patients with uterine fibroids and diabetes. Method: Sixty diabetic patients who agreed to undergo surgery for uterine fibroids at the Sun Yat-sen University Cancer Center from January 2021 to May 2022 were randomly selected as the study subjects. According to criteria such as number of patients, age, nursing methods, and treatment methods, the patients were evenly divided into an observation group and a control group. The control group received routine nursing measures, while the observation group received focused surgical nursing measures based on the routine ones. The blood glucose and blood lipid metabolism status, the incidence of adverse reactions, and nursing satisfaction were compared between the two groups. Results: The blood glucose and blood lipid metabolism status of the observation group were safer than those of the control group (P < 0.05). The observation group had advantages in terms of the incidence of adverse reactions and nursing satisfaction compared to the control group (P Conclusion: Systematic surgical nursing for patients with uterine fibroids and diabetes during surgery can help patients control their blood glucose and blood lipid metabolism status, reduce the incidence of adverse reactions, and improve the patient’s experience during the treatment stage.展开更多
Objective: To evaluate the effect of operating room nursing on the outcome of patients undergoing robot-assisted tumor surgery. Methods: This research starts from October 2021 to October 2022. The number of patients w...Objective: To evaluate the effect of operating room nursing on the outcome of patients undergoing robot-assisted tumor surgery. Methods: This research starts from October 2021 to October 2022. The number of patients with robot-assisted tumor surgery included in our hospital is 769. The patients are treated in the operating room, and the prognosis of the patients is summarized. Results: The intraoperative blood loss in patients undergoing robot-assisted tumor surgery was (57.51 ± 12.01) ml;the operation time was (3.57 ± 0.66) h;and the hospital stay was (6.04 ± 0.53) d. There were 21 cases of complications after robot-assisted tumor surgery, accounting for 2.73%. After surgery, all robot-assisted tumor surgery patients recovered and were discharged smoothly after being checked by doctors. Conclusion: Robot-assisted tumor surgery nursing has a definite effect on patients’ rehabilitation in the operating room.展开更多
文摘Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.
基金National Key Research and Development Program of China(2022YFC2009600,2022YFC2009605)National Natural Science Foundation of China(81973133)。
文摘Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.
基金supported by the National Key Research and Development Program of China(2021YFF0703600).
文摘Crimean-Congo hemorrhagic fever(CCHF)is a zoonotic disease caused by the CCHF virus(CCHFV),which is primarily transmitted by ticks(Lorenzo Juanes et al.2023).It is an emerging disease that occurs sporadically in Africa,Asia,and Europe,with a high morbidity and mortality rate,as high as 30%in humans(Ceylan et al.2013).CCHFV,belonging to genus Nairovirus,family Bunyaviridae,was first identified in the Congo in the 1960s.
文摘Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.
基金the National Key Research and Development Program of China(2017YFD0500502)。
文摘Background:Diarrhea is a major cause of morbidity and mortality in young calves,resulting in considerable economic loss for dairy farms.To determine if some gut microbes might have resistance to dysbiotic process with calf diarrhea by dictating the microbial co-occurrence patterns from birth to post-weaning,we examined the dynamic development of the gut microbiota and diarrhea status using two animal trials,with the first trial having 14 Holstein dairy calves whose fecal samples were collected 18 times over 78 d from birth to 15 d post-weaning and the second trial having 43 Holstein dairy calves whose fecal samples were collected daily from 8 to 18 days of age corresponding to the first diarrhea peak of trial 1.Results:Metataxonomic analysis of the fecal microbiota showed that the development of gut microbiota had three age periods with birth and weaning as the separatrices.Two diarrhea peaks were observed during the transition of the three age periods.Fusobacteriaceae was identified as a diarrhea-associated taxon both in the early stage and during weaning,and Clostridium_sensu_stricto_1 was another increased genus among diarrheic calves in the early stage.In the neonatal calves,Prevotella_2(ASV4 and ASV26),Prevotella_9(ASV43),and Alloprevotella(ASV14)were negatively associated with Clostridium_sensu_stricto_1(ASV48),the keystone taxa of the diarrhea-phase module.During weaning,unclassified Muribaculaceae(ASV28 and ASV44),UBA1819(ASV151),Barnesiella(ASV497),and Ruminococcaceae_UCG-005(ASV254)were identified being associated with non-diarrheic status,and they aggregated in the non-diarrhea module of co-occurrence patterns wherein unclassified Muribaculaceae(ASV28)and Barnesiella(ASV497)had a direct negative relationship with the members of the diarrhea module.Conclusions:Taken together,our results suggest that the dynamic successions of calf gut microbiota and the interactions among some bacteria could influence calf diarrhea,and some species of Prevotella might be the core microbiota in both neonatal and weaning calves,while species of Muribaculaceae might be the core microbiota in weaning calves for preventing calf diarrhea.Some ASVs affiliated with Prevotella_2(ASV4 and ASV26),Prevotella_9(ASV43),Alloprevotella(AVS14),unclassified Muribaculaceae(ASV28 and ASV44),UBA1819(ASV151),Ruminococcaceae_UCG-005(ASV254),and Barnesiella(ASV497)might be proper probiotics for preventing calf diarrhea whereas Clostridium_sensu_stricto_1(ASV48)might be the biomarker for diarrhea risk in specific commercial farms.
基金This study was supported by the Key Research Project Fund of Beijing University of Chinese Medicine(2021JYB2002001)the National Natural Science Foundation of Tibetan medicine Collabo-rative Innovation(82130113).
文摘Objective:To explore the anti-aging effects of chlorogenic acid(CGA)and the underlying mechanisms based on a Caenorhabditis elegans(C.elegans)model.Methods:The anti-agingactivityofCGAwasstudied basedon thebodylength,exercisebehavior,lipofuscin content,antioxidative stress ability,swallowing frequency,body-bending frequency,and head-swinging ability of C.elegans.Through DAF-16 nuclear translocation and SOD-3-GFP fluorescence experiments,the effects of CGA on ROS levels,antioxidant enzyme activities,MDA content,mutant-strain lifespan,and anti-aging molecular signaling pathways were explored,as well as the underlying mechanisms.Results:CGA improved multiple indices of the nematode:body length was increased(all P<0.001),head-swing frequency and body-bending frequency were increased(all P<0.05),nematode longevity was prolonged(P=0.0021),lipofuscin deposition in nematodes was slowed down(all P<0.001),the chemotaxis index was improved(P=0.0012),ROS levels were reduced(all P<.001),and SOD activity and MDA content were reduced(SOD:P=0.0017 between the low-concentration group and the control group,P<.001 between the high-concentration and medium-concentration groups and the control group;MDA:P=0.0135 between the low-concentration group and the control group,and P<0.001 between the high-concentration and medium-concentration groups and the control group).In addition,CGA also activated the DAF-16 transcription factor,promoted DAF-16 nuclear translocation under oxidative stress conditions(both P<0.001 between the high-concentration and medium-concentration groups and the control group),and increased SOD-3 gene expression in nematodes(all P<0.001).Conclusion:CGA plays an anti-aging role in C.elegans.The underlying mechanisms include activation of the insulin/IGF-1 signaling pathway and enhancement of DAF-16 activity.This study lays a foundation for further research into the anti-aging effects of CGA.
基金the Natural Science Foundation of China(Grant Nos.21871065,22209129,and 22071038)the Heilongjiang Touyan Team(HITTY-20190033)+3 种基金High-Level Innovation and Entrepreneurship(QCYRCXM-2022-123)the Talent Project of Qinchuangyuan and Interdisciplinary Research Foundation of HIT(IR2021205)Professor Li acknowledges the financial support from the“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J024)the“Young Talent Lift Plan”of Xi'an city(095920221352).
文摘Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.
基金National Natural Science Foundation of China,Grant/Award Numbers:21871065,22071038Heilongjiang Touyan Team,Grant/Award Number:HITTY‐20190033Interdisciplinary Research Foundation of HIT,Grant/Award Number:IR2021205。
文摘Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.
基金supported by the Key Research and Development Program of Zhejiang Province(2021C02056,2021C02063-6)the National Key Research and Development Program of China(2021YFD1200503)+1 种基金the Fundamental Research Funds for Central Public Welfare Research Institutes of China National Rice Research Institute(CPSIBRF-CNRRI-202101)Chinese Academy of Agricultural Sciences(CAAS-ASTIP-201X-CNRRI)。
文摘Because plant mechanical strength influences plant growth and development,the regulatory mechanisms underlying cell-wall synthesis deserve investigation.Rice mutants are useful for such research.We have identified a novel brittle culm 25(bc25)mutant with reduced growth and partial sterility.BC25 encodes an UDP-glucuronic acid decarboxylase involved in cellulose synthesis and belongs to the UXS family.A single-nucleotide mutation in BC25 accounts for its altered cell morphology and cellwall composition.Transmission electron microscopy analysis showed that the thickness of the secondary cell wall was reduced in bc25.Monosaccharide analysis revealed significant increases in content of rhamnose and arabinose but not of other monosaccharides,indicating that BC25 was involved in xylose synthesis with some level of functional redundancy.Enzymatic assays suggested that BC25 functions with high activity to interconvert UDP-glucuronic acid(UDP-Glc A)and UDP-xylose.GUS staining showed that BC25 was ubiquitously expressed with higher expression in culm,root and sheath,in agreement with that shown by quantitative real-time(q RT)-PCR.RNA-seq further suggested that BC25 is involved in sugar metabolism.We conclude that BC25 strongly influences rice cell wall formation.
文摘Recently,increasing evidence suggests that DNA methylation plays a crucial role in fruit ripening.However,the role of DNA methylation in regulating specific traits,such as flavor,remains unclear.Here,we report a role of DNA methylation in affecting furanone biosynthesis in strawberry.Strawberry quinone oxidoreductase(FaQR)is a key enzyme in furanone biosynthesis.There are four FaQR homologs in strawberry cultivar‘Yuexin’,and one of them,FaQR3,contributes∼50%of FaQR transcripts,indicating a major role of FaQR3 in furanone biosynthesis.Through characterization of levels of DNA methylation and FaQR3 transcript and furanone contents during fruit ripening and after the application of DNA methylation inhibitor,we found that the DNA methylation level of the FaQR3 promoter was negatively correlated with FaQR3 expression and furanone accumulation,suggesting that DNA methylation may be involved in furanone biosynthesis through adjusting FaQR3 expression,and responded to different temperatures consistently.In addition,transient expression of a gene in the RNA-directed DNA methylation(RdDM)pathway,FaAGO4,and enrichment analysis of the 24-nucleotide siRNAs suggested that DNA methylation in the FaQR3 promoter is mediated by the RdDM pathway.Transient RNA interference(RNAi)of FaDML indicated that the demethylation pathway may be involved in regulating furanone accumulation.These findings provide new insights into the role of DNA methylation and demethylation in affecting flavor quality in strawberry during fruit ripening.
基金supported by the financial support from the National Natural Science Foundation of China (21871065, 22071038, 22209129)the Heilongjiang Touyan Team (HITTY20190033)the Interdisciplinary Research Foundation of HIT (IR2021205)。
文摘Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides.
文摘Objective: To analyze the application value of surgical nursing in patients with uterine fibroids and diabetes. Method: Sixty diabetic patients who agreed to undergo surgery for uterine fibroids at the Sun Yat-sen University Cancer Center from January 2021 to May 2022 were randomly selected as the study subjects. According to criteria such as number of patients, age, nursing methods, and treatment methods, the patients were evenly divided into an observation group and a control group. The control group received routine nursing measures, while the observation group received focused surgical nursing measures based on the routine ones. The blood glucose and blood lipid metabolism status, the incidence of adverse reactions, and nursing satisfaction were compared between the two groups. Results: The blood glucose and blood lipid metabolism status of the observation group were safer than those of the control group (P < 0.05). The observation group had advantages in terms of the incidence of adverse reactions and nursing satisfaction compared to the control group (P Conclusion: Systematic surgical nursing for patients with uterine fibroids and diabetes during surgery can help patients control their blood glucose and blood lipid metabolism status, reduce the incidence of adverse reactions, and improve the patient’s experience during the treatment stage.
文摘Objective: To evaluate the effect of operating room nursing on the outcome of patients undergoing robot-assisted tumor surgery. Methods: This research starts from October 2021 to October 2022. The number of patients with robot-assisted tumor surgery included in our hospital is 769. The patients are treated in the operating room, and the prognosis of the patients is summarized. Results: The intraoperative blood loss in patients undergoing robot-assisted tumor surgery was (57.51 ± 12.01) ml;the operation time was (3.57 ± 0.66) h;and the hospital stay was (6.04 ± 0.53) d. There were 21 cases of complications after robot-assisted tumor surgery, accounting for 2.73%. After surgery, all robot-assisted tumor surgery patients recovered and were discharged smoothly after being checked by doctors. Conclusion: Robot-assisted tumor surgery nursing has a definite effect on patients’ rehabilitation in the operating room.