期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A secure visualization platform for pathogenic genome analysis with an accurate reference database
1
作者 Guomei Fan Chongye Guo +8 位作者 Qian Zhang Dongmei Liu Qinglan Sun Zhigang Cui Haijian zhou yuanchun zhou Zhibin Guo Juncai Ma Linhuan Wu 《Biosafety and Health》 CAS CSCD 2024年第4期235-243,共9页
Investigating the genetic and developmental characteristics,infection transmission attributes,and epidemiological trends of pathogens using genomic data represents the foundation for pathogen surveillance and is a cru... Investigating the genetic and developmental characteristics,infection transmission attributes,and epidemiological trends of pathogens using genomic data represents the foundation for pathogen surveillance and is a crucial prerequisite for guaranteeing global health security.To meet the analytical demands of research relating to pathogen prevention and control,we designed a secure visualization system capable of pathogen genome assembly,annotation,species identification,sequence typing,antibiotic resistance and virulence analysis,genomic mobile element and transferable resistance gene annotation,and phylogenetic tree reconstruction.For highly pathogenic organisms requiring complete data protection,we have developed a secure computing tool that utilizes a trusted execution environment,is combined with blockchain and privacy computing technologies,and is specifically designed for nucleotide basic local alignment search tool(BLASTn)comparison analysis.This technological advancement offers scientific support for in‐depth investigations into pathogen transmission and epidemiological mechanisms,environmental adaptability,evolutionary trends,and immune evasion mechanisms,as well as the identification of new or emerging pathogen strains.This,in turn,aids efforts in infectious disease prevention,treatment,and research. 展开更多
关键词 Pathogen surveillance One-stop analysis tools Sequence typing Horizontal transfer Secure computing
原文传递
Degeneration Directory:a multi-omics web resource for degenerative diseases
2
作者 Haoteng Yan Changfa Lu +9 位作者 Chenyang Lan Si Wang Weiqi Zhang Zan He Jinghao Hu Jiaqi Ai Guang-Hui Liu Shuai Ma yuanchun zhou Jing Qu 《Protein & Cell》 SCIE CSCD 2024年第5期385-392,共8页
Background of database.Organ degeneration refers to the gradual decline in organ function and structure deterioration that occurs during aging,which represents the greatest risk factor for various degenerative disease... Background of database.Organ degeneration refers to the gradual decline in organ function and structure deterioration that occurs during aging,which represents the greatest risk factor for various degenerative diseases,including cardiovascular diseases,neurodegenerative diseases,and osteoarthritis,etc.(Aging Biomarker et al.,2023;Becker et al.,2018;Cai et al.,2022). 展开更多
关键词 DIRECTORY WEB Becker
原文传递
科技大数据知识图谱构建方法及应用研究综述 被引量:32
3
作者 周园春 王卫军 +2 位作者 乔子越 肖濛 杜一 《中国科学:信息科学》 CSCD 北大核心 2020年第7期957-987,共31页
以研究科学创新与演化规律为目的的科学学近年来迎来了进一步的发展,科技大数据领域知识图谱在其中发挥了重大的作用.本文将从科技大数据知识图谱构建及应用研究角度,对科学学研究过程中发挥重大推动作用的科技领域知识图谱技术进行系... 以研究科学创新与演化规律为目的的科学学近年来迎来了进一步的发展,科技大数据领域知识图谱在其中发挥了重大的作用.本文将从科技大数据知识图谱构建及应用研究角度,对科学学研究过程中发挥重大推动作用的科技领域知识图谱技术进行系统、深入的综述,阐述科技大数据知识图谱构建过程中涉及的科技实体抽取、科技实体消歧、科技关系抽取、科技关系推断等问题,对科技实体推荐、科技社区发现、科技实体评价、学科交叉以及学科演化等科技大数据知识图谱分析挖掘方法进行系统梳理,并给出科技大数据知识图谱未来的研究及应用方向. 展开更多
关键词 科技大数据 科技领域知识图谱 科学学 科技数据挖掘 图神经网络
原文传递
A grid-based clustering algorithm for wild bird distribution 被引量:4
4
作者 Yuwei WANG yuanchun zhou +7 位作者 Ying LIU Ze LUO Danhuai GUO Jing SHAO Fei TAN Liang WU Jianhui LI Baoping YAN 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期475-485,共11页
Advanced satellite tracking technologies provide biologists with long-term location sequence data to understand movement of wild birds then to find explicit correlation between dynamics of migratory birds and the spre... Advanced satellite tracking technologies provide biologists with long-term location sequence data to understand movement of wild birds then to find explicit correlation between dynamics of migratory birds and the spread of avian influenza. In this paper, we propose a hierarchical clustering algorithm based on a recursive grid partition and kernel density estimation (KDE) to hierarchically identify wild bird habitats with different densities. We hierarchically cluster the GPS data by taking into account the following observations: 1) the habitat variation on a variety of geospatial scales; 2) the spatial variation of the activity patterns of birds in different stages of the migration cycle. In addition, we measure the site fidelity of wild birds based on clustering. To assess effectiveness, we have evaluated our system using a large-scale GPS dataset collected from 59 birds over three years. As a result, our approach can identify the hierarchical habitats and distribution of wild birds more efficiently than several commonly used algorithms such as DBSCAN and DENCLUE. 展开更多
关键词 hierarchical clustering bird migration kerneldensity estimation grid partition
原文传递
gcCov:Linked open data for global coronavirus studies
5
作者 Wenyu Shi Guomei Fan +14 位作者 Zhihong Shen Chuan Hu Juncai Ma yuanchun zhou Zhen Meng Songnian Hu Yuhai Bi Liang Wang Haiying Yu Siru Lin Xiuqiang Sun Xinjiao Zhang Dongmei Liu Qinlan Sun Linhuan Wu 《mLife》 2022年第1期92-95,共4页
Impact Statement We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework(RDF)and implement a server to publish linked open data(LOD).As one ... Impact Statement We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework(RDF)and implement a server to publish linked open data(LOD).As one of the largest and most comprehensive semantic databases about coronaviruses,the resulted gcCov database demonstrates the capability of using data in the LOD framework to promote correlations between genotypes and phenotypes.These correlations will be helpful for future research on fundamental viral mechanisms and drug and vaccine designs. 展开更多
关键词 SERVER DATABASE DATABASES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部