The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance sp...The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance spectral emission intensity.This work uses a femtosecond laser as the light souuce,since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser,meanwhile,the study on femtosecond LIBS with spark discharge is rare.Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies.The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone.And,the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy.In addition,at low laser energy,there was an obvious delay on the discharge time compared with high laser energy,and the discharge time with positive voltage was different from that with negative voltage.展开更多
We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond...We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.展开更多
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire l...In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.展开更多
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circula...In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.展开更多
The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density ...The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density and lattice temperature decrease, while the carrier temperature first increases and then drops. The laser fluence has a great influence on the ultrafast dynamical process in Ge. As the laser fluence remains a constant value, though the overall evolution of the carrier density and lattice temperature is almost independent of pulse duration and laser intensity, increasing the laser intensity will be more effective than increasing the pulse duration in the generation of carriers. Irradiating the Ge sample by the femtosecond double pulses, the ultrafast dynamical process of semiconductor can be affected by the temporal interval between the double pulses.展开更多
Charge carrier mobility is one of the most significant properties for organic semiconductors. In this work, the electronic structures and charge transport properties of 9,10-bis((E)-2-(pyrid-n-yl)vinyl) (n=2, 3...Charge carrier mobility is one of the most significant properties for organic semiconductors. In this work, the electronic structures and charge transport properties of 9,10-bis((E)-2-(pyrid-n-yl)vinyl) (n=2, 3, 4) anthracene (BP2VA, BP3VA and BP4VA) were investigated via the analysis of the molecular geometry, the reorganization en- ergy, the frontier orbital and density of state, as well as the electronic coupling and the charge mobility. The results indicated that the linkage between 9,10-divinyl anthracene unit and pyridine (ortho-, meta- and para-) influenced not only the intra-molecular conformation (i.e., the reorganization energies), but also the intermolecular interaction (i.e., transfer integrals), and finally the charge mobility of the molecules. It is also found that: (1) The calculated charge mobilties of holes are dozens of times higher than those of electrons for the three molecules. (2) The charge mobilities of hole and electron of the three molecules display the trend: μBP4VA〉μBPZVA〉μBP3VA, and the hole mobility of BP4VA is as high as as-cm^2/(V·s).展开更多
基金National Natural Science Foundation of China (Nos. 11674128, and 11674124)Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC).
文摘The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance spectral emission intensity.This work uses a femtosecond laser as the light souuce,since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser,meanwhile,the study on femtosecond LIBS with spark discharge is rare.Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies.The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone.And,the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy.In addition,at low laser energy,there was an obvious delay on the discharge time compared with high laser energy,and the discharge time with positive voltage was different from that with negative voltage.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400)
文摘We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605)
文摘In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
基金support by National Natural Science Foundation of China(Nos.11674128,11674124 and 11974138)Scientific and Technological Research Project of the Education Department of Jilin Province in China(No.JJKH20200937KJ).
文摘In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.
基金supported by the National Basic Research Program of China(973 Program,grant no.2013CB922200)the National Natural Science Foundation of China(grant no.11474129)+1 种基金the Research Fund for the Doctoral Program of Higher Education in China(grant no.20130061110021)the Project 2015091 Supported by Graduate Innovation Fund of Jilin University
文摘The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density and lattice temperature decrease, while the carrier temperature first increases and then drops. The laser fluence has a great influence on the ultrafast dynamical process in Ge. As the laser fluence remains a constant value, though the overall evolution of the carrier density and lattice temperature is almost independent of pulse duration and laser intensity, increasing the laser intensity will be more effective than increasing the pulse duration in the generation of carriers. Irradiating the Ge sample by the femtosecond double pulses, the ultrafast dynamical process of semiconductor can be affected by the temporal interval between the double pulses.
文摘Charge carrier mobility is one of the most significant properties for organic semiconductors. In this work, the electronic structures and charge transport properties of 9,10-bis((E)-2-(pyrid-n-yl)vinyl) (n=2, 3, 4) anthracene (BP2VA, BP3VA and BP4VA) were investigated via the analysis of the molecular geometry, the reorganization en- ergy, the frontier orbital and density of state, as well as the electronic coupling and the charge mobility. The results indicated that the linkage between 9,10-divinyl anthracene unit and pyridine (ortho-, meta- and para-) influenced not only the intra-molecular conformation (i.e., the reorganization energies), but also the intermolecular interaction (i.e., transfer integrals), and finally the charge mobility of the molecules. It is also found that: (1) The calculated charge mobilties of holes are dozens of times higher than those of electrons for the three molecules. (2) The charge mobilities of hole and electron of the three molecules display the trend: μBP4VA〉μBPZVA〉μBP3VA, and the hole mobility of BP4VA is as high as as-cm^2/(V·s).