期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities 被引量:9
1
作者 Boya Zhang Dinghui Yang +1 位作者 yuanfeng cheng Yunyin Zhang 《Science Bulletin》 SCIE EI CSCD 2019年第17期1246-1254,共9页
The wave-induced fluid flow(WIFF) is considered to be the main cause of dispersion and attenuation of seismic waves in fluid-saturated porous media. Among numerous theories, the mesoscopic and microscopic heterogeneit... The wave-induced fluid flow(WIFF) is considered to be the main cause of dispersion and attenuation of seismic waves in fluid-saturated porous media. Among numerous theories, the mesoscopic and microscopic heterogeneities are considered to be the primary mechanisms causing the WIFF. Furthermore,in most rocks, the mesoscopic and microscopic heterogeneities exist simultaneously and can cause obvious transitions of the fast P-wave velocity, which means it is necessary to consider the influence of the two mechanisms on the dispersion and attenuation simultaneously. Numerous results have shown that the dispersions and attenuations caused by these two mechanisms can be approximated in terms of the Zener model. To combine the two mechanisms into a unified model, we introduce a new generalized Zener model into the Biot poroelasticity theory to obtain a new poroviscoelastic model. Comparisons between the numerical results and two groups of experimental data further confirm the validity of our new model. 展开更多
关键词 MESOSCOPIC HETEROGENEITY MICROSCOPIC HETEROGENEITY VISCOELASTIC MODEL Poroviscoelastic MODEL
原文传递
A wave propagation model with the Biot and the fractional viscoelastic mechanisms 被引量:2
2
作者 Jiaming YANG Dinghui YANG +2 位作者 Hongwei HAN Lingyun QIU yuanfeng cheng 《Science China Earth Sciences》 SCIE EI CSCD 2021年第3期364-376,共13页
Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms.In the Biot theory,energy loss only includes the frictional dissipation between the solid phase and the fluid phase,... Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms.In the Biot theory,energy loss only includes the frictional dissipation between the solid phase and the fluid phase,resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range.To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band,we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism,and finally propose a new wave propagation model.Unlike the Biot model,the proposed model includes the intrinsic dissipation of the solid frame.We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P-and S-waves using several numerical experiments.Furthermore,we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model.The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range. 展开更多
关键词 Poroviscoelasticity Wave propagation Dispersion and attenuation Fractional derivative
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部