A new horned toad species,Boulenophrys elongata sp.nov.,is described from Mt.Lianhua,Huidong County,eastern Guangdong,China.The new species is phylogenetically closest to B.brachykolos,which is restricted to the east ...A new horned toad species,Boulenophrys elongata sp.nov.,is described from Mt.Lianhua,Huidong County,eastern Guangdong,China.The new species is phylogenetically closest to B.brachykolos,which is restricted to the east of the Pearl River Estuary(i.e.,Shenzhen City and Hong Kong SAR).The new species can be distinguished from all recognized congeners by a combination of morphological characters and genetic divergences in the combined mitochondrial 16S,12S and CO1 genes.We recommend the new species be listed as Data Deficient(DD)in the IUCN categorization,pending further investigation.展开更多
Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural p...Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection.展开更多
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil...Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.展开更多
Coenzyme Q10(CoQ10)is an important component of the respiratory chain in humans and some bacteria.As a high-value-added nutraceutical antioxidant,CoQ10 has excellent capacity to prevent cardiovascular disease.The cont...Coenzyme Q10(CoQ10)is an important component of the respiratory chain in humans and some bacteria.As a high-value-added nutraceutical antioxidant,CoQ10 has excellent capacity to prevent cardiovascular disease.The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels.In this study,we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain.Moreover,under phosphate-limited conditions(decreased phosphate or in the absence of inorganic phosphate addition),CoQ10 production increased significantly by 12%to220 mg/L,biomass decreased by 12%,and the CoQ10 productivity of unit cells increased by 27%.In subsequent fed-batch fermentation,CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation.Furthermore,to understand the mechanism associated with CoQ10 overproduction under phosphate-limited conditions,the comparatve transcriptome analysis was performed.These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01.Phosphate limitation induced a pleiotropic effect on cell metabolism,and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.展开更多
A holographic visualization of volume data based on adjustable ray to optical-wave conversion is presented.Computergenerated holograms are generated by emitting multiple rays to sample the volumetric field.Equal inter...A holographic visualization of volume data based on adjustable ray to optical-wave conversion is presented.Computergenerated holograms are generated by emitting multiple rays to sample the volumetric field.Equal interval sampling,object light wave adjustment,and information composition are sequentially performed during the march of rays.The program is accelerated in parallel to reduce the total time,and the reconstructions are dynamically adjusted to express different parts of an object.Optical experiments verify that the proposed method can holographically reconstruct the surface and interior information of objects.展开更多
Nucleic acid detection plays a key role in diverse diagnosis and disease control.Currently available nucleic acid detection techniques are challenged by trade-offs among speed,simplicity,precision and cost.Here,we des...Nucleic acid detection plays a key role in diverse diagnosis and disease control.Currently available nucleic acid detection techniques are challenged by trade-offs among speed,simplicity,precision and cost.Here,we described a novel method,designated SENSOR(Sulfur DNA mediated nucleic acid sensing platform),for rapid nucleic acid detection.SENSOR was developed from phosphorothioate(PT)-DNA and sulfur binding domain(SBD)which specifically binds double-stranded PT-modified DNA.SENSOR utilizes PT-DNA oligo and SBD as targeting module,which is linked with split luciferase reporter to generate luminescence signal within 10 min.We tested detection on synthesized nucleic acid and COVID-19 pseudovirus,achieving attomolar sensitivity combined with an amplification procedure.Single nucleotide polymorphisms(SNP)could also be discriminated.Indicating SENSOR a new promising nucleic acid detection technique.展开更多
基金supported by the Project of Background Survey of Biosafety in Guangdong Province(STST-2021-10)the Project of Study on Optimal Allocation and Sustainable Development of Typical Urban and Rural Ecological Resources(K610222062406).
文摘A new horned toad species,Boulenophrys elongata sp.nov.,is described from Mt.Lianhua,Huidong County,eastern Guangdong,China.The new species is phylogenetically closest to B.brachykolos,which is restricted to the east of the Pearl River Estuary(i.e.,Shenzhen City and Hong Kong SAR).The new species can be distinguished from all recognized congeners by a combination of morphological characters and genetic divergences in the combined mitochondrial 16S,12S and CO1 genes.We recommend the new species be listed as Data Deficient(DD)in the IUCN categorization,pending further investigation.
基金the National Key Research and Development Program of China(Grant No.2021YFB3601201)the National Natural Science Foundation of China(Grant No.62101057)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2021ZT07).
文摘Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection.
基金This work was supported financially by the National Key Research and Development Plan Projects of China(2017YFC0504604).
文摘Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.
基金The authors appreciate Dr.Jin Miao for the help to construct engineered strains in Table 1.The author also appreciates Prof.Hongwei Yu for providing plasmid materials.This work was supported by the National Natural Science Foundation of China[31870040,31430002,31720103901]the 111 Project of China[B18022]+2 种基金the Fundamental Research Funds for the Central Universities[22221818014]the Natural Science Foundation of Shandong Province[ZR2017ZB0206]the Shandong Taishan Scholar Award to Lixin Zhang.
文摘Coenzyme Q10(CoQ10)is an important component of the respiratory chain in humans and some bacteria.As a high-value-added nutraceutical antioxidant,CoQ10 has excellent capacity to prevent cardiovascular disease.The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels.In this study,we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain.Moreover,under phosphate-limited conditions(decreased phosphate or in the absence of inorganic phosphate addition),CoQ10 production increased significantly by 12%to220 mg/L,biomass decreased by 12%,and the CoQ10 productivity of unit cells increased by 27%.In subsequent fed-batch fermentation,CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation.Furthermore,to understand the mechanism associated with CoQ10 overproduction under phosphate-limited conditions,the comparatve transcriptome analysis was performed.These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01.Phosphate limitation induced a pleiotropic effect on cell metabolism,and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.
基金partly supported by the National Natural Science Foundation of China (Nos. 61905017 and 61905019)the Fundamental Research Funds for the Central Universities (Nos. 2019RC13 and 2019PTB-018)
文摘A holographic visualization of volume data based on adjustable ray to optical-wave conversion is presented.Computergenerated holograms are generated by emitting multiple rays to sample the volumetric field.Equal interval sampling,object light wave adjustment,and information composition are sequentially performed during the march of rays.The program is accelerated in parallel to reduce the total time,and the reconstructions are dynamically adjusted to express different parts of an object.Optical experiments verify that the proposed method can holographically reconstruct the surface and interior information of objects.
基金supported by the National Natural Science Foundation of China(31900060)National Key Research and Development Program of China(2020YFA0907800,2022YFC3400200,2022YFA0912200)+1 种基金Natural Science Foundation of Shanghai(20ZR1414500)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(21TQ1400204).
文摘Nucleic acid detection plays a key role in diverse diagnosis and disease control.Currently available nucleic acid detection techniques are challenged by trade-offs among speed,simplicity,precision and cost.Here,we described a novel method,designated SENSOR(Sulfur DNA mediated nucleic acid sensing platform),for rapid nucleic acid detection.SENSOR was developed from phosphorothioate(PT)-DNA and sulfur binding domain(SBD)which specifically binds double-stranded PT-modified DNA.SENSOR utilizes PT-DNA oligo and SBD as targeting module,which is linked with split luciferase reporter to generate luminescence signal within 10 min.We tested detection on synthesized nucleic acid and COVID-19 pseudovirus,achieving attomolar sensitivity combined with an amplification procedure.Single nucleotide polymorphisms(SNP)could also be discriminated.Indicating SENSOR a new promising nucleic acid detection technique.