Selective hydrogenation is an important industrial catalytic process in chemical upgrading, where Pd-based catalysts are widely used because of their high hydrogenation activities. However, poor selectivity and short ...Selective hydrogenation is an important industrial catalytic process in chemical upgrading, where Pd-based catalysts are widely used because of their high hydrogenation activities. However, poor selectivity and short catalyst lifetime because of heavy coke formation have been major concerns. In this work, atomically dispersed Pd atoms were successfully synthesized on graphitic carbon nitride (g-C3N4) using atomic layer deposition. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed the dominant presence of isolated Pd atoms without Pd nanoparticle (NP) formation. During selective hydrogenation of acetylene in excess ethylene, the g-C3N4-supported Pd NP catalysts had strikingly higher ethylene selectivities than the conventional Pd/Al2O3 and Pd/SiO2 catalysts. In-situ X-ray photoemission spectroscopy revealed that the considerable charge transfer from the Pd NPs to g-C3N4 likely plays an important role in the catalytic performance enhancement. More impressively, the single-atom Pd1/C3N4 catalyst exhibited both higher ethylene selectivity and higher coking resistance. Our work demonstrates that the single-atom Pd catalyst is a promising candidate for improving both selectivity and coking-resistance in hydrogenation reactions.展开更多
基金Acknowledgements This work was supported by the Thousand Talents Plan, the National Natural Science Foundation of China (Nos. 21473169, 21673215, and 51402283), the Fundamental Research Funds for the Central Universities (Nos. WK2060030017 and WK2060190026), and the startup funds from the University of Science and Technology of China. This work was also supported by Hefei Science Center (No. 2015HSC-UP010).
文摘Selective hydrogenation is an important industrial catalytic process in chemical upgrading, where Pd-based catalysts are widely used because of their high hydrogenation activities. However, poor selectivity and short catalyst lifetime because of heavy coke formation have been major concerns. In this work, atomically dispersed Pd atoms were successfully synthesized on graphitic carbon nitride (g-C3N4) using atomic layer deposition. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed the dominant presence of isolated Pd atoms without Pd nanoparticle (NP) formation. During selective hydrogenation of acetylene in excess ethylene, the g-C3N4-supported Pd NP catalysts had strikingly higher ethylene selectivities than the conventional Pd/Al2O3 and Pd/SiO2 catalysts. In-situ X-ray photoemission spectroscopy revealed that the considerable charge transfer from the Pd NPs to g-C3N4 likely plays an important role in the catalytic performance enhancement. More impressively, the single-atom Pd1/C3N4 catalyst exhibited both higher ethylene selectivity and higher coking resistance. Our work demonstrates that the single-atom Pd catalyst is a promising candidate for improving both selectivity and coking-resistance in hydrogenation reactions.