期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unraveling high efficiency multi-step sodium storage and bidirectional redox kinetics synergy mechanism of cobalt-doping vanadium disulfide anode
1
作者 Enzhi Li Mingshan Wang +10 位作者 yuanlong feng Lin Yang Qian Li Zhenliang Yang Junchen Chen Bo Yu Bingshu Guo Zhiyuan Ma Yun Huang Jiangtao Liu Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期148-157,共10页
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s... Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs. 展开更多
关键词 Sodium-ionbatteries Sodium-ion hybrid capacitors Pouch cells Vanadium disulfide Shuttle effect
下载PDF
Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode 被引量:2
2
作者 Yang Gao Mingshan Wang +10 位作者 Hao Wang Xinpeng Li Yuanwei Chu Zhicheng Tang yuanlong feng Jiaqi Wang Yong Pan Zhiyuan Ma Zhenliang Yang Dan Zhou Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期62-72,共11页
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo... An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries. 展开更多
关键词 Zn anode Organic small molecule Aqueous zinc-ion battery Zinc formate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部