As a typical compatible solute, proline is accumulated in plants under environmental stresses. Proline transporter(Pro T) plays an important role in proline distribution between plant organs. Using a candidate gene ap...As a typical compatible solute, proline is accumulated in plants under environmental stresses. Proline transporter(Pro T) plays an important role in proline distribution between plant organs. Using a candidate gene approach, we cloned a c DNA sequence for Pro T from common bean(Phaseolus vulgaris L.) and designated the gene Pv Pro T. The deduced amino acid sequence of Pv Pro T showed high similarity to Bet/Pro T proteins from other leguminous plants, and the highest similarity was observed with mothbean(Vigna aconitifolia L.) Vu Pro T.Relative quantification of the m RNA level of Pv Pro T using real-time PCR analysis showed that the Pv Pro T transcript level was higher in leaves than in stems and roots of common bean plants subjected to drought and salt stress. Under 20%(w/w) PEG-6000 treatment,drought-resistant plants expressed a higher level of Pv Pro T transcripts than droughtsensitive plants. Although heterologous expression of Pv Pro T in the Escherichia coli mutant mkh13 showed that Pv Pro T exhibited uptake activities for proline and betaine, no betaine content was detected in the common bean. These findings suggest that Pv Pro T plays an important role in the transportation of proline in common bean plants exposed to drought and salt stress.展开更多
基金supported by an earmarked fund for China Agriculture Research System (No. CARS-09)the Agricultural Science and Technology Innovation Program (ASTIP) of CAASthe Higher Education Institution Key Research Project Plan of Henan Province (No. 15A210042)
文摘As a typical compatible solute, proline is accumulated in plants under environmental stresses. Proline transporter(Pro T) plays an important role in proline distribution between plant organs. Using a candidate gene approach, we cloned a c DNA sequence for Pro T from common bean(Phaseolus vulgaris L.) and designated the gene Pv Pro T. The deduced amino acid sequence of Pv Pro T showed high similarity to Bet/Pro T proteins from other leguminous plants, and the highest similarity was observed with mothbean(Vigna aconitifolia L.) Vu Pro T.Relative quantification of the m RNA level of Pv Pro T using real-time PCR analysis showed that the Pv Pro T transcript level was higher in leaves than in stems and roots of common bean plants subjected to drought and salt stress. Under 20%(w/w) PEG-6000 treatment,drought-resistant plants expressed a higher level of Pv Pro T transcripts than droughtsensitive plants. Although heterologous expression of Pv Pro T in the Escherichia coli mutant mkh13 showed that Pv Pro T exhibited uptake activities for proline and betaine, no betaine content was detected in the common bean. These findings suggest that Pv Pro T plays an important role in the transportation of proline in common bean plants exposed to drought and salt stress.