A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite w...A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite was prepared successfully. The metallographic analysis and performance test show that the microstructure of parts is dense and mechanical properties axe excellent with the volume fraction of Al is 37%. The bend strength and fracture toughness of the composite are about 570- 690 MPa and 8.5-16.8 MPa·m^1/2, respectively. Comparing with reaction in situ and high temperature oxidation technologies the bending strength and fracture toughness are improved greatly. At the same time, it shows that the technology parameters have great influences on the properties. So it is feasible to prepare metal/ceramics composites by the proposed technology.展开更多
基金supported by National Natural Science Foundation of China(No50705018)Postdoctoral Foundation of China (No20070420847)
文摘A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite was prepared successfully. The metallographic analysis and performance test show that the microstructure of parts is dense and mechanical properties axe excellent with the volume fraction of Al is 37%. The bend strength and fracture toughness of the composite are about 570- 690 MPa and 8.5-16.8 MPa·m^1/2, respectively. Comparing with reaction in situ and high temperature oxidation technologies the bending strength and fracture toughness are improved greatly. At the same time, it shows that the technology parameters have great influences on the properties. So it is feasible to prepare metal/ceramics composites by the proposed technology.