Copper oxide nanomaterials have been extensively applied and can have serious impacts when discharged into the aquatic environment, especially when complexed with humic acid(HA) to form composite contaminants.As an in...Copper oxide nanomaterials have been extensively applied and can have serious impacts when discharged into the aquatic environment, especially when complexed with humic acid(HA) to form composite contaminants.As an innovative recycled coagulant aid,Enteromorpha polysaccharides(Ep) were associated with polyaluminum chloride(PACl)(denoted as PACl-Ep) to simultaneously remove CuO nanoparticles, Cu2+and HA in this study.The influence of different Al species coagulants(AlCl3, PAClb and PAClc) and water pH on coagulation performance, floc properties and reaction mechanisms was investigated in detail.Results showed that in the three PACl-Ep systems, PAClb-Ep gave the highest removal efficiencies for turbidity and Cu2+, and the best UV254 removal effect was reached by using PAClc-Ep.Higher contents of Alb and Alc contributed to great coagulation performance because of their stronger bridging and sweeping effects.For all the Al species coagulants, alkalescent conditions were more conducive to removing Cu and HA compared to acidic conditions.Additionally, smaller and more agminated flocs with great recovery ability were formed by PAClb-Ep and PAClc-Ep systems(bridging and enmeshment effects cooperated with the chelated reticular structure formed by the Ep and Al species).Similarly,due to the increased hydrolysis and hydroxide precipitates, flocs formed under the condition of alkalescence were smaller, denser and stronger compared with weakly acidic conditions.展开更多
Enteromorpha polysaccharide (Ep) extracted from alga a novel green coagulant aid for nanoparticles (NPs) and heavy metal ions removal and the structure of EP was intensively studied in this study. The integration ...Enteromorpha polysaccharide (Ep) extracted from alga a novel green coagulant aid for nanoparticles (NPs) and heavy metal ions removal and the structure of EP was intensively studied in this study. The integration of Ep with polyaluminum chloride (PAC-Ep) coagulants exhibited higher coagulation performance than that of the polyaluminum chloride (PAC) because of the negatively charged NPs suspension and humic aid (HA) solution. Significant high removal efficiencies of dissolved organic matter (94.1%), turbidity (99.3%) and Zn ions (69.3%) were achieved by the PAC-Ep coagulants. The dual-coagulation properties of PAC-Ep for different pollutants was based on multiple mechanisms, including (i) AI^3+ charge neutralization; (ii) hydroxy aluminum hydroxyl bridging formed polynuclearhydroxy complexes bridge and sweep colloidal particles; (iii) adsorption and bridging of Ep chain for the NPs and heavy metal ions. Results indicated that the destabilization of colloid was induced by the coexisting HA and higher removal was achieved as ions adsorption was enhance in the presence of HA complexation. On the basis of that, the extraction of polysaccharide is a promising candidate for its high coagulation performance in water treatment.展开更多
基金supported by the Taishan Scholar Program (No.ts 201511003)the National Natural Science Foundation of China (No.51478250).
文摘Copper oxide nanomaterials have been extensively applied and can have serious impacts when discharged into the aquatic environment, especially when complexed with humic acid(HA) to form composite contaminants.As an innovative recycled coagulant aid,Enteromorpha polysaccharides(Ep) were associated with polyaluminum chloride(PACl)(denoted as PACl-Ep) to simultaneously remove CuO nanoparticles, Cu2+and HA in this study.The influence of different Al species coagulants(AlCl3, PAClb and PAClc) and water pH on coagulation performance, floc properties and reaction mechanisms was investigated in detail.Results showed that in the three PACl-Ep systems, PAClb-Ep gave the highest removal efficiencies for turbidity and Cu2+, and the best UV254 removal effect was reached by using PAClc-Ep.Higher contents of Alb and Alc contributed to great coagulation performance because of their stronger bridging and sweeping effects.For all the Al species coagulants, alkalescent conditions were more conducive to removing Cu and HA compared to acidic conditions.Additionally, smaller and more agminated flocs with great recovery ability were formed by PAClb-Ep and PAClc-Ep systems(bridging and enmeshment effects cooperated with the chelated reticular structure formed by the Ep and Al species).Similarly,due to the increased hydrolysis and hydroxide precipitates, flocs formed under the condition of alkalescence were smaller, denser and stronger compared with weakly acidic conditions.
文摘Enteromorpha polysaccharide (Ep) extracted from alga a novel green coagulant aid for nanoparticles (NPs) and heavy metal ions removal and the structure of EP was intensively studied in this study. The integration of Ep with polyaluminum chloride (PAC-Ep) coagulants exhibited higher coagulation performance than that of the polyaluminum chloride (PAC) because of the negatively charged NPs suspension and humic aid (HA) solution. Significant high removal efficiencies of dissolved organic matter (94.1%), turbidity (99.3%) and Zn ions (69.3%) were achieved by the PAC-Ep coagulants. The dual-coagulation properties of PAC-Ep for different pollutants was based on multiple mechanisms, including (i) AI^3+ charge neutralization; (ii) hydroxy aluminum hydroxyl bridging formed polynuclearhydroxy complexes bridge and sweep colloidal particles; (iii) adsorption and bridging of Ep chain for the NPs and heavy metal ions. Results indicated that the destabilization of colloid was induced by the coexisting HA and higher removal was achieved as ions adsorption was enhance in the presence of HA complexation. On the basis of that, the extraction of polysaccharide is a promising candidate for its high coagulation performance in water treatment.