期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
1
作者 Kamlesh Kumar Soothar yuanxiang chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
基于Bi-LSTM的同时同频全双工数字域自干扰抑制方法 被引量:1
2
作者 鲁帆 范占春 +5 位作者 马超 陈远祥 汪予晗 程竟爽 杜海龙 胡聪 《中国科学:信息科学》 CSCD 北大核心 2023年第10期1982-1993,共12页
同时同频全双工(co-frequency co-time full duplex, CCFD)系统在相同的频率上同时进行信号的收发,理论上可使通信频谱利用率提高一倍.但是由于收发天线等前端模块距离较近,系统中会存在很强的自干扰信号.当前常用的自适应滤波、最小二... 同时同频全双工(co-frequency co-time full duplex, CCFD)系统在相同的频率上同时进行信号的收发,理论上可使通信频谱利用率提高一倍.但是由于收发天线等前端模块距离较近,系统中会存在很强的自干扰信号.当前常用的自适应滤波、最小二乘法估计等自适应干扰抑制方法存在着不能有效抑制多径信道和功放非线性产生自干扰信号的不足.针对此问题,本文提出一种基于双向长短时记忆神经网络(bi-directional long short-term memory, Bi-LSTM)的CCFD数字域自干扰抑制方法.首先根据多径信道的特征,采用记忆多项式对自干扰信道进行建模;然后采用Wild Horse优化算法(Wild Horse optimizer, WHO),通过迭代寻找到最优时延单位以确定训练数据的特征数;最后搭建Bi-LSTM网络进行训练,重构出自干扰信号,并在接收端减去,以达到自干扰抑制的目的.在仿真实验中采用OFDM (orthogonal frequency division multiplexing)信号作为参考信号,实现了47.17 dB自干扰信号抑制比,较传统最小二乘(least square, LS)算法有31.58 dB的提升.结果表明,本文所提出的方法可高效准确地提高CCFD系统的自干扰信号抑制能力. 展开更多
关键词 同时同频全双工(CCFD) 双向长短时记忆神经网络(Bi-LSTM) Wild Horse优化算法(WHO) OFDM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部