The increasing penetration of renewable energy sources introduces higher requirements for the operation flexibility of transmission system(TS) and connected active distribution systems(DSs). This paper presents an eff...The increasing penetration of renewable energy sources introduces higher requirements for the operation flexibility of transmission system(TS) and connected active distribution systems(DSs). This paper presents an efficient distributed framework for the TS and DSs to work cooperatively yet independently. In addition to conventional power interaction, upward and downward reserve capacities are exchanged to form the feasible access regions at the boundaries that apply to different system operation situations. A distributed robust energy and reserve dispatch approach is proposed under this framework. The approach utilizes the supply-and demand-side resources in different systems to handle various uncertainties and improve overall efficiency and reliability. In particular, integrated as aggregated virtual energy storage(AVES) devices, air-conditioning loads are incorporated into the optimal dispatch. In addition, a reserve model with charging/discharging-state elasticity is developed for AVESs to enhance system flexibility and provide additional reserve support. Different cases are compared to verify the effectiveness and superiority of the proposed approach.展开更多
With the development of communication technology and distributed energy resources,trading of carbon emission rights and peer-to-peer energy transactions have become popular research directions on the end-user side.The...With the development of communication technology and distributed energy resources,trading of carbon emission rights and peer-to-peer energy transactions have become popular research directions on the end-user side.Therefore,a cap-andtrade emission framework with peer-to-peer energy trading is employed in this paper.The emission cap decomposition problem is solved under the circumstances of a multi-energy peer-topeer energy trading market.First,the multi-energy system is introduced in the peer-to-peer energy sharing model.The interaction between the prosumers and the system operator is defined.Then,the total emission cap,set by the operator,is modeled as a constraint.The decomposition of the emission cap is modeled as a cake-cutting game.Finally,the existence and uniqueness of the cake-cutting solution is proven by modeling the game to an equivalent monotone variational inequality problem.The complementary characteristics of multi energy in the market can ensure the utility of prosumers while reducing the total cap.展开更多
基金supported by the Scientific Research Startup Foundation of Recruiting Talents of Nanjing Institute of Technology (No. YKJ202225)。
文摘The increasing penetration of renewable energy sources introduces higher requirements for the operation flexibility of transmission system(TS) and connected active distribution systems(DSs). This paper presents an efficient distributed framework for the TS and DSs to work cooperatively yet independently. In addition to conventional power interaction, upward and downward reserve capacities are exchanged to form the feasible access regions at the boundaries that apply to different system operation situations. A distributed robust energy and reserve dispatch approach is proposed under this framework. The approach utilizes the supply-and demand-side resources in different systems to handle various uncertainties and improve overall efficiency and reliability. In particular, integrated as aggregated virtual energy storage(AVES) devices, air-conditioning loads are incorporated into the optimal dispatch. In addition, a reserve model with charging/discharging-state elasticity is developed for AVESs to enhance system flexibility and provide additional reserve support. Different cases are compared to verify the effectiveness and superiority of the proposed approach.
基金supported by the National Key Research and Development Program of China (improvement and expansion of load characteristic perception ability of urban power grid users)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22-0254).
文摘With the development of communication technology and distributed energy resources,trading of carbon emission rights and peer-to-peer energy transactions have become popular research directions on the end-user side.Therefore,a cap-andtrade emission framework with peer-to-peer energy trading is employed in this paper.The emission cap decomposition problem is solved under the circumstances of a multi-energy peer-topeer energy trading market.First,the multi-energy system is introduced in the peer-to-peer energy sharing model.The interaction between the prosumers and the system operator is defined.Then,the total emission cap,set by the operator,is modeled as a constraint.The decomposition of the emission cap is modeled as a cake-cutting game.Finally,the existence and uniqueness of the cake-cutting solution is proven by modeling the game to an equivalent monotone variational inequality problem.The complementary characteristics of multi energy in the market can ensure the utility of prosumers while reducing the total cap.