Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There...Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are ...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D...Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D(25(OH)D)levels and mental disorders.The data used for the MR analysis were derived from the summary genome-wide association studies(GWAS)database for VC and 25(OH)D and from the Finn Gen consortium for fourteen mental disorders.Based on the inverse variance weighted(IVW)method,we found a potential causal association between circulating VC and anxiety disorders(IVW:OR=1.139,95%CI:1.023-1.269,P=0.018).However,no causal association was found between VC or 25(OH)D and other mental disorders(P>0.05).In the reverse MR analysis,individuals with Alzheimer’s disease was causally associated with higher concentrations of circulating VC(P=0.012),while individuals with anxiety disorders had a negative association between the concentrations of 25(OH)D(P=0.012).However,the current evidence does not support a causal relationship between VC or 25(OH)D and other mental disorders.In addition,there was no causal association between circulating VC and 25(OH)D(P>0.05).Future studies are needed to confirm these findings and to elucidate the mechanisms of potential causality.展开更多
When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located do...When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.展开更多
Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the ...Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the relationship between spatial clustering,heterogeneity of chickenpox outbreaks,and socioeconomic factors in Southern China.Methods We assessed chickenpox outbreak data from Southern China between 2006 and 2021,comprising both relatively fast-growing parts and slower sub-regions,and provides a representative sample of many developing regions.We analyzed the spatial clustering attributes associated with chickenpox outbreaks using Moran’s I and local indicators of spatial association and quantified their socioeconomic determinants using Geodetector q statistics.Results There were significant spatial heterogeneity in the risk of chickenpox outbreaks,with strong correlations between chickenpox risk and various factors,particularly demographics and living environment.Furthermore,interactive effects among specific are factors,such as population density and per capita residential building area,percentage of households with toilets,percentage of rental housing,exhibited q statistics of 0.28,0.25,and 0.24,respectively.Conclusion This study provides valuable insights into the spatial dynamics of chickenpox outbreaks in rapidly developing regions,revealing the socioeconomic factors affecting disease transmission.These implications extend the formulation of effective public health strategies and interventions to prevent and control chickenpox outbreaks in similar global contexts.展开更多
Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of spec...Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.展开更多
目的:筛选中药活性成分作为鼠伤寒沙门氏菌致病性岛III(Salmonella pathogenicity island III,SPI-3)潜在毒力抑制剂。方法:通过分子对接技术明确中药成分与SPI-3中的MgtC蛋白的潜在结合关系。使用β-半乳糖苷酶测定法评估中药成分对mgt...目的:筛选中药活性成分作为鼠伤寒沙门氏菌致病性岛III(Salmonella pathogenicity island III,SPI-3)潜在毒力抑制剂。方法:通过分子对接技术明确中药成分与SPI-3中的MgtC蛋白的潜在结合关系。使用β-半乳糖苷酶测定法评估中药成分对mgtC转录的影响。最后,通过评估细菌生长曲线和关键代谢基因的转录水平研究药物对细菌生长的影响。结果:所有27个候选中药成分均显示出与MgtC结合的潜力。阿魏酸、对羟基肉桂酸、牛蒡子苷和掌叶防己碱使mgtC的转录活性降低了15%以上。这四个成分对mgtC转录的最低抑制浓度分别为:阿魏酸16μM;对羟基肉桂酸40μM;牛蒡子苷80μM;掌叶防己碱160μM。此外,我们证实这四种成分均未抑制细菌生长。结论:在本研究中,我们建立了一种基于β-半乳糖苷酶测定法的鼠伤寒沙门氏菌毒力抑制剂筛选方法。以SPI-3为靶标,筛选了27种中药成分,发现有4种对鼠伤寒沙门氏菌毒力具有潜在的强效抑制作用。这为未来从草药中开发新型抗生素提供了先导化合物。这种方法也可用于筛选其他致病菌的毒力抑制剂。展开更多
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi...Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.展开更多
The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent b...The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent bond plays an important role for the structural stability of N-chain.The charge transfer results in a V–N ionic bond interaction,which further improves the stability of N-chain structure.The P-1-VN_4,P4mnc-VN_8,and Immm-VN_(10)with the outstanding detonation properties have potential application in explosive field.展开更多
We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing...We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing from room temperature and turns to a metallic behavior below 38 K.When the magnetic field is applied,the temperature-dependent resistivity curves show an upturn below 10 K.Furthermore,we find that the TaCoTe_(2) single crystal can be easily exfoliated from the bulk crystal by the micromechanical exfoliation method.Our measurements suggest that the nanoflakes have properties similar to those of the bulk crystal when the thickness is lowered to 18 nm.展开更多
Synthesis pressure and structural stability are two crucial factors for highly energetic materials,and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions.Here,we syste...Synthesis pressure and structural stability are two crucial factors for highly energetic materials,and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions.Here,we systematically explore Ce–N compounds through first-principles calculations,demonstrating that the cerium atom can weaken the strength of the N≡N bond and that a rich variety of cerium polynitrides can be formed under moderate pressure.Significantly,P1-CeN_(6) possesses the lowest synthesis pressure of 32 GPa among layered metal polynitrides owing to the strong ligand effect of cerium.The layered structure of P1-CeN_(6) proposed here consists of novel N_(14) ring.To clarify the formation mechanism of P1-CeN_(6),the reaction path Ce+3N2→trans-CeN_(6)→P1-CeN_(6) is proposed.In addition,P1-CeN_(6) possesses high hardness(20.73 GPa)and can be quenched to ambient conditions.Charge transfer between cerium atoms and N_(14) rings plays a crucial role in structural stability.Furthermore,the volumetric energy density(11.20 kJ/cm^(3))of P1-CeN_(6) is much larger than that of TNT(7.05 kJ/cm^(3)),and its detonation pressure(128.95 GPa)and detonation velocity(13.60 km/s)are respectively about seven times and twice those of TNT,and it is therefore a promising high-energy-density material.展开更多
South China Sea (SCS) is the largest Western Pacific marginal sea. However, microbial studies have never been performed in the cold seep sediments in the SCS. In 2004, "SONNE" 177 cruise found two cold seep areas ...South China Sea (SCS) is the largest Western Pacific marginal sea. However, microbial studies have never been performed in the cold seep sediments in the SCS. In 2004, "SONNE" 177 cruise found two cold seep areas with different water depth in the northern SCS. Haiyang 4 area, where the water depth is around 3000 m, has already been confirmed for active seeping on the seafloor, such as microbial mats, authigenic carbonate crusts and bivalves. We investigated microbial abundance and diver- sity in a 5.55-m sediment core collected from this cold seep area. An integrated approach was employed including geochemistry and 16S rRNA gene phylogenetic analyses. Here, we show that microbial abun- dance and diversity along with geochemistry profiles of the sediment core revealed a coupled reaction between sulphate reduction and methane oxidation. Acridine orange direct count results showed that microbial abundance ranges from 105 to 106 cells/g sediment (wet weight). The depth-related variation of the abundance showed the same trend as the methane concentration profile. Phylogenetic analysis indicated the presence of sulphate-reducing bacteria and anaerobic methane-oxidizing archaea. The diver- sity was much higher at the surface, but decreased sharply with depth in response to changes in the geochemical conditions of the sediments, such as methane, sulphate concentration and total organic carbon. Marine Benthic Group B, Chloroflexi and JS1 were predominant phylotypes of the archaeal and bacterial libraries, respectively.展开更多
Objective:Pyruvate kinases M(PKM),including the PKM1 and PKM2 isoforms,are critical factors in glucose metabolism.PKM2promotes aerobic glycolysis,a phenomenon known as"the Warburg effect".The purpose of this...Objective:Pyruvate kinases M(PKM),including the PKM1 and PKM2 isoforms,are critical factors in glucose metabolism.PKM2promotes aerobic glycolysis,a phenomenon known as"the Warburg effect".The purpose of this study was to identify the roles of PKM2 in regulating cellular metabolism.Methods:The CRISPR/Cas9 system was used to generate the PKM-knockout cell model to evaluate the role of PKM in cellular metabolism.Lactate levels were measured by the Vitros LAC slide method on an autoanalyzer and glucose levels were measured by the autoanalyzer AU5800.The metabolism of ^(13)C_6-glucose or ^(13)C_5-glutamine was evaluated by liquid chromatography/mass spectrometry analyses.The effects of PKM on tumor growth were detected in vivo in a tumor-bearing mouse model.Results:We found that both PKM1 and PKM2 enabled aerobic glycolysis,but PKM2 converted glucose to lactate much more efficiently than PKM1.As a result,PKM2 reduced glucose levels reserved for intracellular utilization,particularly for the production of citrate,and thus increased theα-ketoglutarate/citrate ratio to promote the generation of glutamine-derived acetylcoenzyme A through the reductive pathway.Furthermore,reductive glutamine metabolism facilitated cell proliferation under hypoxia conditions,which supports in vivo tumor growth.In addition,PKM-deletion induced a reverse Warburg effect in tumorassociated stromal cells.Conclusions:PKM2 plays a critical role in promoting reductive glutamine metabolism and maintaining proton homeostasis.This study is helpful to increase the understanding of the physiological role of PKM2 in cancer cells.展开更多
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
基金supported by the Ministry of Education Humanities and Social Science Research Project(No.23YJAZH034)The Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.SJCX24_2147,SJCX24_2148)+1 种基金National Computer Basic Education Research Project in Higher Education Institutions(Nos.2024-AFCEC-056,2024-AFCEC-057)Enterprise Collaboration Project(Nos.Z421A22349,Z421A22304,Z421A210045).
文摘Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.
基金supported by the National Natural Science Foundation of China(62074052,61974173,52072327)the Joint Talent Cultivation Funds of NSFC-HN(U1904192)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金funded by the Nactional Natural Science Foundation of China(81872618)。
文摘Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D(25(OH)D)levels and mental disorders.The data used for the MR analysis were derived from the summary genome-wide association studies(GWAS)database for VC and 25(OH)D and from the Finn Gen consortium for fourteen mental disorders.Based on the inverse variance weighted(IVW)method,we found a potential causal association between circulating VC and anxiety disorders(IVW:OR=1.139,95%CI:1.023-1.269,P=0.018).However,no causal association was found between VC or 25(OH)D and other mental disorders(P>0.05).In the reverse MR analysis,individuals with Alzheimer’s disease was causally associated with higher concentrations of circulating VC(P=0.012),while individuals with anxiety disorders had a negative association between the concentrations of 25(OH)D(P=0.012).However,the current evidence does not support a causal relationship between VC or 25(OH)D and other mental disorders.In addition,there was no causal association between circulating VC and 25(OH)D(P>0.05).Future studies are needed to confirm these findings and to elucidate the mechanisms of potential causality.
基金supported by the Research Project of the Technical Inspection Center of Sinopec Shengli Oilfield Company.
文摘When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.
基金supported by the Natural Science Foundation of Henan Province(242300421361)National Science Foundation of China(42371223,41901331)Innovation Project of LREIS(O88RA205YA,O88RA200YA).
文摘Objective The occurrence of chickenpox in rapidly developing areas poses substantial seasonal risk to children.However,certain factors influencing local chickenpox outbreaks have not been studied.Here,we examined the relationship between spatial clustering,heterogeneity of chickenpox outbreaks,and socioeconomic factors in Southern China.Methods We assessed chickenpox outbreak data from Southern China between 2006 and 2021,comprising both relatively fast-growing parts and slower sub-regions,and provides a representative sample of many developing regions.We analyzed the spatial clustering attributes associated with chickenpox outbreaks using Moran’s I and local indicators of spatial association and quantified their socioeconomic determinants using Geodetector q statistics.Results There were significant spatial heterogeneity in the risk of chickenpox outbreaks,with strong correlations between chickenpox risk and various factors,particularly demographics and living environment.Furthermore,interactive effects among specific are factors,such as population density and per capita residential building area,percentage of households with toilets,percentage of rental housing,exhibited q statistics of 0.28,0.25,and 0.24,respectively.Conclusion This study provides valuable insights into the spatial dynamics of chickenpox outbreaks in rapidly developing regions,revealing the socioeconomic factors affecting disease transmission.These implications extend the formulation of effective public health strategies and interventions to prevent and control chickenpox outbreaks in similar global contexts.
文摘Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.
基金supported by the National Natural Science Foundation of China(82072247 and 82374154)National Key Research and Development Project of China(2022YFC3502300)+2 种基金Natural Science Foundation of Beijing Municipality(L222150)Tianjin Chasesun Pharmaceutical(BUCM-2022-JS-FW-076)Zhuhai Yourun Co.,Ltd.(BUCM-2023-JS-KF-018)
文摘目的:筛选中药活性成分作为鼠伤寒沙门氏菌致病性岛III(Salmonella pathogenicity island III,SPI-3)潜在毒力抑制剂。方法:通过分子对接技术明确中药成分与SPI-3中的MgtC蛋白的潜在结合关系。使用β-半乳糖苷酶测定法评估中药成分对mgtC转录的影响。最后,通过评估细菌生长曲线和关键代谢基因的转录水平研究药物对细菌生长的影响。结果:所有27个候选中药成分均显示出与MgtC结合的潜力。阿魏酸、对羟基肉桂酸、牛蒡子苷和掌叶防己碱使mgtC的转录活性降低了15%以上。这四个成分对mgtC转录的最低抑制浓度分别为:阿魏酸16μM;对羟基肉桂酸40μM;牛蒡子苷80μM;掌叶防己碱160μM。此外,我们证实这四种成分均未抑制细菌生长。结论:在本研究中,我们建立了一种基于β-半乳糖苷酶测定法的鼠伤寒沙门氏菌毒力抑制剂筛选方法。以SPI-3为靶标,筛选了27种中药成分,发现有4种对鼠伤寒沙门氏菌毒力具有潜在的强效抑制作用。这为未来从草药中开发新型抗生素提供了先导化合物。这种方法也可用于筛选其他致病菌的毒力抑制剂。
基金supported by the project of National Key Research and Development Program of China(2016YFD0300301 and 2017YFD0300603)The 2115 Talent Development Program of China Agricultural University。
文摘Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
文摘The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent bond plays an important role for the structural stability of N-chain.The charge transfer results in a V–N ionic bond interaction,which further improves the stability of N-chain structure.The P-1-VN_4,P4mnc-VN_8,and Immm-VN_(10)with the outstanding detonation properties have potential application in explosive field.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1600201)the National Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+4 种基金Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)Youth Innovation Promotion Association of CAS (Grant No.2021117)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.E26MMG71131)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing from room temperature and turns to a metallic behavior below 38 K.When the magnetic field is applied,the temperature-dependent resistivity curves show an upturn below 10 K.Furthermore,we find that the TaCoTe_(2) single crystal can be easily exfoliated from the bulk crystal by the micromechanical exfoliation method.Our measurements suggest that the nanoflakes have properties similar to those of the bulk crystal when the thickness is lowered to 18 nm.
基金This work was supported financially by the National Key R&D Program of China(Grant Nos.2018YFA0305900 and 2018YFA0703404)the National Natural Science Foundation of China under Grant Nos.21905159,11634004,51320105007,11604116,and 51602124,the Program for Changjiang Scholars and Innovative Research Team in the University of the Ministry of Education of China under Grant No.IRT1132+1 种基金the Higher Educational Youth Innovation Science and Technology Program Shandong Province(Grant No.2022KJ183)GHfund B(Grant No.202202026143).
文摘Synthesis pressure and structural stability are two crucial factors for highly energetic materials,and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions.Here,we systematically explore Ce–N compounds through first-principles calculations,demonstrating that the cerium atom can weaken the strength of the N≡N bond and that a rich variety of cerium polynitrides can be formed under moderate pressure.Significantly,P1-CeN_(6) possesses the lowest synthesis pressure of 32 GPa among layered metal polynitrides owing to the strong ligand effect of cerium.The layered structure of P1-CeN_(6) proposed here consists of novel N_(14) ring.To clarify the formation mechanism of P1-CeN_(6),the reaction path Ce+3N2→trans-CeN_(6)→P1-CeN_(6) is proposed.In addition,P1-CeN_(6) possesses high hardness(20.73 GPa)and can be quenched to ambient conditions.Charge transfer between cerium atoms and N_(14) rings plays a crucial role in structural stability.Furthermore,the volumetric energy density(11.20 kJ/cm^(3))of P1-CeN_(6) is much larger than that of TNT(7.05 kJ/cm^(3)),and its detonation pressure(128.95 GPa)and detonation velocity(13.60 km/s)are respectively about seven times and twice those of TNT,and it is therefore a promising high-energy-density material.
基金supported by the National Program on Key Basic Research Project(973 Program)(Grant No.2009CB219502)National Special Foundation(Grant No.GZH200200203-02-01)Non-profit Industry Financial Program of Ministry of Land and Resources of the PRC(Grant No.200811014-02)
文摘South China Sea (SCS) is the largest Western Pacific marginal sea. However, microbial studies have never been performed in the cold seep sediments in the SCS. In 2004, "SONNE" 177 cruise found two cold seep areas with different water depth in the northern SCS. Haiyang 4 area, where the water depth is around 3000 m, has already been confirmed for active seeping on the seafloor, such as microbial mats, authigenic carbonate crusts and bivalves. We investigated microbial abundance and diver- sity in a 5.55-m sediment core collected from this cold seep area. An integrated approach was employed including geochemistry and 16S rRNA gene phylogenetic analyses. Here, we show that microbial abun- dance and diversity along with geochemistry profiles of the sediment core revealed a coupled reaction between sulphate reduction and methane oxidation. Acridine orange direct count results showed that microbial abundance ranges from 105 to 106 cells/g sediment (wet weight). The depth-related variation of the abundance showed the same trend as the methane concentration profile. Phylogenetic analysis indicated the presence of sulphate-reducing bacteria and anaerobic methane-oxidizing archaea. The diver- sity was much higher at the surface, but decreased sharply with depth in response to changes in the geochemical conditions of the sediments, such as methane, sulphate concentration and total organic carbon. Marine Benthic Group B, Chloroflexi and JS1 were predominant phylotypes of the archaeal and bacterial libraries, respectively.
基金supported by the funds from National Natural Science Foundation of China(Grant No.81672762,81622037 and 81602446)
文摘Objective:Pyruvate kinases M(PKM),including the PKM1 and PKM2 isoforms,are critical factors in glucose metabolism.PKM2promotes aerobic glycolysis,a phenomenon known as"the Warburg effect".The purpose of this study was to identify the roles of PKM2 in regulating cellular metabolism.Methods:The CRISPR/Cas9 system was used to generate the PKM-knockout cell model to evaluate the role of PKM in cellular metabolism.Lactate levels were measured by the Vitros LAC slide method on an autoanalyzer and glucose levels were measured by the autoanalyzer AU5800.The metabolism of ^(13)C_6-glucose or ^(13)C_5-glutamine was evaluated by liquid chromatography/mass spectrometry analyses.The effects of PKM on tumor growth were detected in vivo in a tumor-bearing mouse model.Results:We found that both PKM1 and PKM2 enabled aerobic glycolysis,but PKM2 converted glucose to lactate much more efficiently than PKM1.As a result,PKM2 reduced glucose levels reserved for intracellular utilization,particularly for the production of citrate,and thus increased theα-ketoglutarate/citrate ratio to promote the generation of glutamine-derived acetylcoenzyme A through the reductive pathway.Furthermore,reductive glutamine metabolism facilitated cell proliferation under hypoxia conditions,which supports in vivo tumor growth.In addition,PKM-deletion induced a reverse Warburg effect in tumorassociated stromal cells.Conclusions:PKM2 plays a critical role in promoting reductive glutamine metabolism and maintaining proton homeostasis.This study is helpful to increase the understanding of the physiological role of PKM2 in cancer cells.