Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can h...Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.展开更多
In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parame...In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parameters of the device were simulated for theoretical prediction of best device structure.The reflector was fabricated by alternate thermal evaporation of two chalcogenide glasses with large refractive index contrast.The reflectivity was greater than 78%at 10.6μm.The flexible reflective film can provide an effective solution for full-angle CO_(2) laser protection of the moving targets,such as laser operators and mobile optical components,with potential applications for wearable laser protective clothing.展开更多
In-fiber structured particles and filament array have been recently emerging,providing unique advantages of feasible fabrication,diverse structures and sophisticated functionalities.This review will focus on the progr...In-fiber structured particles and filament array have been recently emerging,providing unique advantages of feasible fabrication,diverse structures and sophisticated functionalities.This review will focus on the progress of this topic mainly from the perspective of fluid instabilities.By suppressing the capillary instability,the uniform layered structures down to nanometers are attained with the suitable materials selection.On the other hand,by utilizing capillary instability via post-drawing thermal treatment,the unprecedent structured particles can be designed with multimaterials for multifunctional fiber devices.Moreover,an interesting filamentation instability of a stretching viscous sheet has been identified during thermal drawing,resulting in an array of filaments.This review may inspire more future work to produce versatile devices for fiber electronics,either at a single fiber level or in large-scale fabrics and textiles,simply by manipulating and controlling fluid instabilities.展开更多
文摘Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.
基金supported by the National Natural Science Foundation of China(No.61875064)。
文摘In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parameters of the device were simulated for theoretical prediction of best device structure.The reflector was fabricated by alternate thermal evaporation of two chalcogenide glasses with large refractive index contrast.The reflectivity was greater than 78%at 10.6μm.The flexible reflective film can provide an effective solution for full-angle CO_(2) laser protection of the moving targets,such as laser operators and mobile optical components,with potential applications for wearable laser protective clothing.
基金Guangming Tao acknowledges the National Natural Science Foundation of China(Grant No.61875064)WNLO Man-Machine Lab Fund,WNLO Innovation Fund and HUST Innovation Fund(Grant No.2172018KFYXKJC021)+3 种基金State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University.Lei Wei acknowledges the support by the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2015-T2-2-010)Singapore Ministry of Education Academic Research Fund Tier 1(MOE2019-T1-001-103 and MOE2019-T1-001-111)the EEE Ignition Research Grant.Daosheng Deng is indebted to Prof.Yoel Fink,Prof.Steven Johnson,and Prof.Howard Stone for the guidance and discussions on the topic of in-fiber nanostructures generated by fluid instabilities,and the collaboration with Prof.Ayman Abouraddyacknowledges the funding support by the National Young Thousand Talent Program in China and startup from Fudan University.
文摘In-fiber structured particles and filament array have been recently emerging,providing unique advantages of feasible fabrication,diverse structures and sophisticated functionalities.This review will focus on the progress of this topic mainly from the perspective of fluid instabilities.By suppressing the capillary instability,the uniform layered structures down to nanometers are attained with the suitable materials selection.On the other hand,by utilizing capillary instability via post-drawing thermal treatment,the unprecedent structured particles can be designed with multimaterials for multifunctional fiber devices.Moreover,an interesting filamentation instability of a stretching viscous sheet has been identified during thermal drawing,resulting in an array of filaments.This review may inspire more future work to produce versatile devices for fiber electronics,either at a single fiber level or in large-scale fabrics and textiles,simply by manipulating and controlling fluid instabilities.