期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cell-derived nanovesicles from mesenchymal stem cells as extracellular vesicle-mimetics in wound healing
1
作者 yub raj neupane Harish K.Handral +11 位作者 Syed Abdullah Alkaff Wei Heng Chng Gopalakrishnan Venkatesan Chenyuan Huang Choon Keong Lee Jiong-Wei Wang Gopu Sriram Rhonnie Austria Dienzo Wen Feng Lu Yusuf Ali Bertrand Czarny Giorgia Pastorin 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第5期1887-1902,共16页
Wound healing is a dynamic process that involves a series of molecular and cellular events aimed at replacing devitalized and missing cellular components and/or tissue layers.Recently,extracellular vesicles(EVs),natur... Wound healing is a dynamic process that involves a series of molecular and cellular events aimed at replacing devitalized and missing cellular components and/or tissue layers.Recently,extracellular vesicles(EVs),naturally cell-secreted lipid membrane-bound vesicles laden with biological cargos including proteins,lipids,and nucleic acids,have drawn wide attention due to their ability to promote wound healing and tissue regeneration.However,current exploitation of EVs as therapeutic agents is limited by their low isolation yields and tedious isolation processes.To circumvent these challenges,bioinspired cell-derived nanovesicles(CDNs)that mimic EVs were obtained by shearing mesenchymal stem cells(MSCs)through membranes with different pore sizes.Physical characterisations and highthroughput proteomics confirmed that MSC-CDNs mimicked MSC-EVs.Moreover,these MSC-CDNs were efficiently uptaken by human dermal fibroblasts and demonstrated a dose-dependent activation of MAPK signalling pathway,resulting in enhancement of cell proliferation,cell migration,secretion of growth factors and extracellular matrix proteins,which all promoted tissue regeneration.Of note,MSC-CDNs enhanced angiogenesis in human dermal microvascular endothelial cells in a 3D PEGfibrin scaffold and animal model,accelerating wound healing in vitro and in vivo.These findings suggest that MSC-CDNs could replace both whole cells and EVs in promoting wound healing and tissue regeneration. 展开更多
关键词 Extracellular vesicles Cell-derived nanovesicles BIONANOTECHNOLOGY Mesenchymal stem cells Fibroblasts Cell proliferation Cell migration ECM Wound healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部