期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
国内外重点城市数字技能竞争力比较研究 被引量:2
1
作者 马晔风 陈煜波 黄鹤 《中国人力资源开发》 CSSCI 北大核心 2023年第8期119-134,共16页
新一轮科技革命和产业变革浪潮下,数字技能的重要性日益凸显。发展数字技能不仅能帮助人们更好地适应数字化变革,也是国家和地区打造数字经济竞争力的关键。本研究基于领英平台的人才大数据,对全球重点城市的劳动力数字技能发展现状进... 新一轮科技革命和产业变革浪潮下,数字技能的重要性日益凸显。发展数字技能不仅能帮助人们更好地适应数字化变革,也是国家和地区打造数字经济竞争力的关键。本研究基于领英平台的人才大数据,对全球重点城市的劳动力数字技能发展现状进行深入分析,并以国外城市为参照,比较分析我国数字技能的优势和差距。研究发现,我国数字技能的行业渗透性和技能多样性偏低,数字技能结构偏向于基础性数字技能。从技能竞争力来看,我国数字技能优势主要体现在人工智能、机器人两大颠覆性技术领域。为了更好地推动数字经济发展,未来应将数字技能培养纳入国家经济发展长期战略,建立政府、教育机构、企业和劳动者等多方参与的数字技能长效培养机制。 展开更多
关键词 数字技能 数字化转型 颠覆性技能 竞争力
原文传递
Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells 被引量:4
2
作者 Qi Huang Shanshan Jiang +6 位作者 Yujia Wang Jingjing Jiang yubo chen Jiahuan Xu Hao Qiu Chao Su Daifen chen 《Nano Research》 SCIE EI CSCD 2023年第7期9280-9288,共9页
Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by t... Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by the lack of durable and high-activity air electrodes.A lot number of cobalt-based oxides have been developed as air electrodes for PCFCs,due to their high oxygen reduction reaction(ORR)activity.However,cobalt-based oxides usually have more significant thermal expansion coefficients(TECs)and poor thermomechanical compatibility with electrolytes.These characteristics can lead to cell delamination and degradation.Herein,we rationally design a novel cobalt-containing composite cathode material with the nominal composition of Sr_(4)Fe_(4)Co_(2)O_(13)+δ(SFC).SFC is composed of tetragonal perovskite phase(Sr_(8)Fe_(8)O_(23)+δ,I4/mmm,81 wt.%)and spinel phase(Co_(3)O_(4),Fd3m,19 wt.%).The SFC composite cathode displays an ultra-high oxygen ionic conductivity(0.053 S·cm^(-1)at 550℃),superior CO_(2)tolerance,and suitable TEC value(17.01×10^(-6)K^(-1)).SFC has both the O_(2)^(-)/e^(-)conduction function,and the triple conducting(H^(+)/O_(2)^(-)/e^(-))capability was achieved by introducing the protonic conduction phase(BaZr_(0.2)Ce_(0.7)Y_(0.1)O_(3-δ),BZCY)to form SFC+BZCY(70 wt.%:30 wt.%).The SFC+BZCY composite electrode exhibits superior ORR activity at a reduced temperature with extremely low area-specific resistance(ASR,0.677Ω·cm^(2)at 550℃),profound peak power density(PPD,535 mW·cm^(-2)and 1.065 V at 550℃),extraordinarily long-term durability(>500 h for symmetrical cell and 350 h for single cell).Moreover,the composite has an ultra-low TEC value(15.96×10^(-6)K^(-1)).This study proves that SFC+BZCY with triple conducting capacity is an excellent cathode for low-temperature PCFCs. 展开更多
关键词 protonic ceramic fuel cells spinel oxide composition tuning triple-conducting
原文传递
Semi-Supervised Noisy Label Learning for Chinese Clinical Named Entity Recognition 被引量:2
3
作者 Zhucong Li Zhen Gan +5 位作者 Baoli Zhang yubo chen Jing Wan Kang Liu Jun Zhao Shengping Liu 《Data Intelligence》 2021年第3期389-401,共13页
This paper describes our approach for the Chinese clinical named entity recognition(CNER) task organized by the 2020 China Conference on Knowledge Graph and Semantic Computing(CCKS) competition. In this task, we need ... This paper describes our approach for the Chinese clinical named entity recognition(CNER) task organized by the 2020 China Conference on Knowledge Graph and Semantic Computing(CCKS) competition. In this task, we need to identify the entity boundary and category labels of six entities from Chinese electronic medical record(EMR). We constructed a hybrid system composed of a semi-supervised noisy label learning model based on adversarial training and a rule post-processing module. The core idea of the hybrid system is to reduce the impact of data noise by optimizing the model results. Besides, we used post-processing rules to correct three cases of redundant labeling, missing labeling, and wrong labeling in the model prediction results. Our method proposed in this paper achieved strict criteria of 0.9156 and relax criteria of 0.9660 on the final test set, ranking first. 展开更多
关键词 Named entity recognition Electronic medical record Noisy label learning SEMI-SUPERVISED Adversarial training
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部