Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the ho...Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.展开更多
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two...A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two-fluid model is used to calculate both gas and liquid phases’flow characteristics.The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced.Moreover,energy conservation is applied for obtaining the liquid film thickness distribution along the circumference.Liquid film thickness distribution is calculated accordingly for different cases;its values are compared with other models and available experimental data.As a result,the newly proposed model is tested and good performances are demonstrated.The liquid film thickness distribution in small pipes and inclined pipes is also studied,and regime transition is revealed by liquid film profile evolution.The observed inflection point demonstrates that the liquid film thickness decreases steeply along the circumference,when the circle angle ranges between 30°and 50°for gas-liquid stratified flow with small superficial velocities.展开更多
[Objectives]This study was conducted to find out regulatory genes related to purple in spears of asparagus(Asparagus officinalis L.).[Methods]The stable asparagus inbred line JX1513-5(the base of the spear is purple)a...[Objectives]This study was conducted to find out regulatory genes related to purple in spears of asparagus(Asparagus officinalis L.).[Methods]The stable asparagus inbred line JX1513-5(the base of the spear is purple)and JLV1718-7(the base of the spear is green)were used as parents to study the genetic law of purple/green traits in their offspring.[Results]The results showed that the purple in the basal part of asparagus spear was controlled by a pair of alleles,and purple was dominant over green.The F 2 segregation population was resequenced by the bulk segregation analysis(BSA)method,and the purple trait in the basal part of asparagus spear was located in the interval of 24.51-25.08 Mb on Chr07 chromosome,which included 47 genes.According to the annotation information,three candidate genes were screened out:LOC109849403,LOC109849430 and LOC109849442.The candidate genes were verified by real-time fluorescence quantitative PCR(qRT-PCR),and finally LOC109849442 was obtained as the candidate gene for controlling the purple/green trait in the basal part of asparagus spear.[Conclusions]This study lays a foundation for the breeding of new asparagus varieties and molecular marker-assisted breeding.展开更多
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha...Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater.展开更多
The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynam...The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynamics, it is deduced and found that the more severe the change in the electron transverse acceleration, the stronger the asymmetry of the radiation angle distribution, and the greater the transverse acceleration, the greater the radiation energy. Tightly focused, ultrashort,and high-intensity lasers lead to violent electron acceleration processes, resulting in a bifurcated radiation structure with asymmetry and higher energy. Additionally, a change in the initial phase of the laser brings about periodic change of the acceleration, which in turn makes the radiation change periodically with the initial phase. In other cases, the radiation is in a symmetrical double-peak structure. These phenomena will help us to modulate radiation with more energy collimation.展开更多
Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneo...Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneous and dynamic distributed Internet of things environment between different Internet of things.There is a wide demand for cooperation between equipment and management institutions in the smart city.Therefore,it is necessary to establish a trust mechanism to promote cooperation,and based on this,prevent data disorder caused by the interaction between honest terminals and malicious temminals.However,most of the existing research on trust mechanism is divorced from the Internet of things environment,and does not consider the characteristics of limited computing and storage capacity and large differences of Internet of hings devices,resuling in the fact that the research on abstract trust trust mechanism cannot be directly applied to the Internet of things;On the other hand,various threats to the Internet of things caused by security vulnerabilities such as collision attacks are not considered.Aiming at the security problems of cross domain trusted authentication of Intelligent City Internet of things terminals,a cross domain trust model(CDTM)based on self-authentication is proposed.Unlike most trust models,this model uses self-certified trust.The cross-domain process of internet of things(IoT)terminal can quickly establish a trust relationship with the current domain by providing its trust certificate stored in the previous domain interaction.At the same time,in order to alleviate the collision attack and improve the accuracy of trust evaluation,the overall trust value is calculated by comprehensively considering the quantity weight,time attenuation weight and similarity weight.Finally,the simulation results show that CDTM has good anti collusion attack ability.The success rate of malicious interaction will not increase significantly.Compared with other models,the resource consumption of our proposed model is significantly reduced.展开更多
Background:Long non-coding RNAs(lncRNAs)are emerging key regulators involved in a variety of biological processes such as cell differentiation and development.The balance between myogenesis and adipogenesis is crucial...Background:Long non-coding RNAs(lncRNAs)are emerging key regulators involved in a variety of biological processes such as cell differentiation and development.The balance between myogenesis and adipogenesis is crucial for skeletal muscle homeostasis in humans and meat quality in farm animals.The present study aimed to reveal the global transcriptomic profiles of adipogenic(Adi-)and myogenic(Myo-)precursors derived from porcine skeletal muscle and identify lncRNAs involved in the modulation of myogenesis homeostasis in porcine skeletal muscle.Results:In this study,a total of 655 novel individual lncRNAs including differentially expressed 24 lncRNAs,and 755 differentially expressed mRNAs were identified(fold change≥2 or≤0.5 and adjusted P<0.05).Integrated results of Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis accompanied by the variation of intracellular Ca2+concentration highlighted Lnc-ADAMTS9 involved in the modulation of myogenesis homeostasis in porcine skeletal muscle.Although Lnc-ADAMTS9 knock-down did not alter the mRNA expression of ADAMTS9,we demonstrated that Lnc-ADAMTS9 can promote myogenic proliferation and myogenic differentiation of myogenic precursors through inhibiting the ERK/MAPK signaling pathway.Conclusion:We deciphered a comprehensive catalog of mRNAs and lncRNAs that might be involved in the regulation of myogenesis and adipogenesis homeostasis in the skeletal muscle of pigs.The Lnc-ADAMTS9 exerts an essential role in myogenesis through the ERK signaling pathway.展开更多
Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the...Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the application layer. Therefore, it is nec- essary to monitor whether or not awareness nodes are trusted in real time, but the existing mechanisms for trusted certification lack the real-time measurement and tracking of the sensing node. To solve the above problems, this paper proposes a dynamic metric based authentication mechanism for sensing nodes of Internet of things. Firstly, the dynamic trustworthiness measure of the sensing nodes is carried out by introducing the computational function such as the trust function, the trust- worthiness risk assessment function, the feed- back control function and the active function of the sensing node. The dynamic trustworthi- ness measure of sensing nodes from multiple dimensions can effectively describe the change of trusted value of sensing nodes. Then, on the basis of this, a trusted attestation based on node trusted measure is realized by using the revocable group signature mechanism of local verifier. The mechanism has anonymity, un- forgeability and traceability, which is proved the security in the standard model. Simulationexperiments show that the proposed trusted attestation mechanism is flexible, practical and ef|Scient and has better attack resistance. It can effectively guarantee the reliable data transmission of nodes and realize the dynamic tracking of node reliability, which has a lower impact on system performance.展开更多
Background:Cytosolic Ca^(2+)plays vital roles in myogenesis and muscle development.As a major Ca^(2+)release channel of endoplasmic reticulum(ER),ryanodine receptor 1(RyR1)key mutations are main causes of severe conge...Background:Cytosolic Ca^(2+)plays vital roles in myogenesis and muscle development.As a major Ca^(2+)release channel of endoplasmic reticulum(ER),ryanodine receptor 1(RyR1)key mutations are main causes of severe congenital myopathies.The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear.Results:In the present study,both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation,myotube formation as well as the potential mechanism of RyR1-related myopathies.We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation,accompanied by significantly elevated cytoplasmic Ca^(2+)concentration.Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor,dantrolene,significantly reduced cytosolic Ca^(2+)and blocked multinucleated myotube formation.The elevation of cytoplasmic Ca^(2+)concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition,demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca^(2+)release channel.However,RyR1-knockout-induced Ca^(2+)leakage led to the severe ER stress and excessive unfolded protein response,and drove myoblasts into apoptosis.Conclusions:Therefore,we concluded that Ca^(2+)release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion.This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies,and provides a potential target for regulation of muscle characteristics and meat quality.展开更多
There are many heterogeneous sensing nodes in the sensing layer of the Internet of Things, and the amount of data transmission is huge, which puts high requirements on the allocation of network bandwidth. At the same ...There are many heterogeneous sensing nodes in the sensing layer of the Internet of Things, and the amount of data transmission is huge, which puts high requirements on the allocation of network bandwidth. At the same time, untrusted sensing nodes maliciously invade network resources. Therefore, how to confirm whether a sensing node is trusted and reasonably allocate network resources is an urgent problem to be solved. To resolve this issue, this paper proposes a sensing network resource allocation model based on trusted groups. Through the sensing node computing environment and behavior measurement, we can identify and exclude untrusted nodes, so the trusted group can be built. Then the network resources are distributed from a global perspective. Based on the available bandwidth of the link, a network resource fusion model of IPv4 and IPv6 is proposed. On this basis, a global network resource allocation model is further proposed. Afterwards, real-time monitoring of data transmission behavior ensures data security during transmission. Simulation experiments show that this mechanism can effectively optimize the bandwidth allocation in the data transmission process and has little effect on the running efficiency of existing network applications. At the same time, it can effectively guarantee the trust of nodes and achieve trusted data transmission.展开更多
A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects. In this study, we compared the eff...A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects. In this study, we compared the efficacy of different lengths (6, 8, 10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects. At 16 weeks after the regeneration chamber was implanted, the number, diameter and myelin sheath thickness of the regenerated nerve fibers, as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio, were similar to that observed with autologous nerve transplantation. Our results demonstrate that 6-, 8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects. Because the chemoattractive capacity is not affected by the length of the nerve fragment, we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.展开更多
According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing me...According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing mechanism based on typical data center network architecture. The mechanism can make the network flow in its exclusive network link bandwidth and transmission path, which can improve the link utilization and the use of the network energy efficiency. Meanwhile, we apply trusted computing to guarantee the high security, high performance and high fault-tolerant routing forwarding service, which helps improving the average completion time of network flow.展开更多
Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the ...Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the gate and source decreases after the off-state stress,whereas the current between the gate and drain increases.By analyzing those changes of the reverse currents based on the Frenkel–Poole model,we realize that the ionization of fluorine ions occurs during the off-state stress.Furthermore,threshold voltage degradation is also observed after the off-state stress,but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different.By comparing the differences between those devices,we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation.Lastly,suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.展开更多
Clogging is a major geohazards risk in mechanized tunnelling through cohesive soils.Clay clogging results from the high adhesion between the clay and metal.Based on the water film theory and Reynolds fluid equation,th...Clogging is a major geohazards risk in mechanized tunnelling through cohesive soils.Clay clogging results from the high adhesion between the clay and metal.Based on the water film theory and Reynolds fluid equation,the interfacial adhesion between metal and soil is simplified in this study as viscous hydrodynamic behavior between planes.Considering the influence of capillary force and the viscous force of water film at the interface between metal and soil,a theoretical calculation model of interfacial adhesion between metal and soil is established.The influence of water film thickness and separation rate on the interfacial adhesion between metal and soil is qualitatively analyzed.Then,the adhesion stress between the clay and the metal surface was tested with a pullout test and the influence of moisture content,pullout rates and types of clay minerals on the adhesion stress was analyzed.Finally,the calculation model of adhesion force was compared with the experimental results.The calculation model of soil adhesion stress established in this paper can quantitatively describe the relationship between soil adhesion force and moisture content and can also qualitatively reveal the influence mechanism of soil moisture content on adhesion stress.展开更多
Clogging frequently occurs in the cutter head,excavation chamber or screw conveyor when an earth pressure balance(EPB)shield machine is tunneling in soft or silty clay ground with high clay mineral content.In this pap...Clogging frequently occurs in the cutter head,excavation chamber or screw conveyor when an earth pressure balance(EPB)shield machine is tunneling in soft or silty clay ground with high clay mineral content.In this paper,montmorillonite,kaolinite,and illite were selected as research objects,and molecular dynamics simulation and laboratory experiment were adopted.At the microscopic scale,dynamic contact behavior and interfacial mechanical behavior of the interface between clay minerals and water/surfactant solution was simulated and the interfacial adhesion and conditioning mechanism between clay minerals and water/surfactant solution was revealed.Thus,sodium dodecyl benzene sulfonate surfactant was selected as the main composition of the soil conditioner.Then,the adhesion stress before and after soil conditioning and the contact angles between clay minerals and water/surfactant solution were tested and analyzed at the macroscopic scale.The result shows that the contact angle between droplet and clay mineral surface is an important parameter to characterize soil adhesion.The simulation rules of the microscopic contact angle are consistent with the experiment results.Furthermore,the adsorption energy between microscopic substances is dominated by electrostatic force,which can reflect the adhesion stress between macroscopic substances.Soil adhesion stress can be effectively decreased by adding the surfactant to the soil conditioner.展开更多
Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential ap...Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential approaches for converting and fixing CO_(2).Organic electrochemical synthesis is a promising method for utilizing CO_(2)because it transforms CO_(2)into higher-value chemicals.This review introduces the research aspects of CO_(2)conversion and the mechanisms of CO_(2)organic electrocarboxylation reactions.Recent progress in electrocarboxylation with CO_(2)is discussed,considering organic substrates and cathode types under different reaction mechanisms.Finally,the challenges and prospects in this field are highlighted with the aim of further promoting the fundamental understanding of CO_(2)organic electrocarboxylation.展开更多
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
基金supported by the National Key Research and Development Program of China,2018YFD0500400。
文摘Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金support provided by Shandong Provincial Science and Technology Plan Project(No.2023TSGC0625)Natural Resources Defense Council(NRDC,K94).
文摘A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two-fluid model is used to calculate both gas and liquid phases’flow characteristics.The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced.Moreover,energy conservation is applied for obtaining the liquid film thickness distribution along the circumference.Liquid film thickness distribution is calculated accordingly for different cases;its values are compared with other models and available experimental data.As a result,the newly proposed model is tested and good performances are demonstrated.The liquid film thickness distribution in small pipes and inclined pipes is also studied,and regime transition is revealed by liquid film profile evolution.The observed inflection point demonstrates that the liquid film thickness decreases steeply along the circumference,when the circle angle ranges between 30°and 50°for gas-liquid stratified flow with small superficial velocities.
基金Supported by S&T Program of Hebei (22326309D)HAAFS Science and Technology Innovation Special Project (2022KJCXZX-JZS-08).
文摘[Objectives]This study was conducted to find out regulatory genes related to purple in spears of asparagus(Asparagus officinalis L.).[Methods]The stable asparagus inbred line JX1513-5(the base of the spear is purple)and JLV1718-7(the base of the spear is green)were used as parents to study the genetic law of purple/green traits in their offspring.[Results]The results showed that the purple in the basal part of asparagus spear was controlled by a pair of alleles,and purple was dominant over green.The F 2 segregation population was resequenced by the bulk segregation analysis(BSA)method,and the purple trait in the basal part of asparagus spear was located in the interval of 24.51-25.08 Mb on Chr07 chromosome,which included 47 genes.According to the annotation information,three candidate genes were screened out:LOC109849403,LOC109849430 and LOC109849442.The candidate genes were verified by real-time fluorescence quantitative PCR(qRT-PCR),and finally LOC109849442 was obtained as the candidate gene for controlling the purple/green trait in the basal part of asparagus spear.[Conclusions]This study lays a foundation for the breeding of new asparagus varieties and molecular marker-assisted breeding.
基金supported by the Key Research and Development Program of Zhejiang(2022C03075)National Natural Science Foundation of China(22241603)Zhejiang Provincial Natural Science Foundation of China(LR22D010001)。
文摘Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10947170/A05 and 11104291)Natural Science Fund for Colleges and Universities in Jiangsu Province(Grant No.10KJB140006)+2 种基金Natural Sciences Foundation of Shanghai(Grant No.11ZR1441300)Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY221098)sponsored by the Jiangsu Qing Lan Project and STITP Project(Grant No.XYB2013012)。
文摘The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynamics, it is deduced and found that the more severe the change in the electron transverse acceleration, the stronger the asymmetry of the radiation angle distribution, and the greater the transverse acceleration, the greater the radiation energy. Tightly focused, ultrashort,and high-intensity lasers lead to violent electron acceleration processes, resulting in a bifurcated radiation structure with asymmetry and higher energy. Additionally, a change in the initial phase of the laser brings about periodic change of the acceleration, which in turn makes the radiation change periodically with the initial phase. In other cases, the radiation is in a symmetrical double-peak structure. These phenomena will help us to modulate radiation with more energy collimation.
基金This paper was sponsored in part by Beijing Postdoctoral Research Foundation(No.2021-ZZ-077,No.2020-YJ-006)Chongqing Industrial Control System Security Situational Awareness Platform,2019 Industrial Internet Innovation and Development Project-Provincial Industrial Control System Security Situational Awareness Platform,Center for Research and Innovation in Software Engineering,School of Computer and Information Science(Southwest University,Chongqing 400175,China)Chongqing Graduate Education Teaching Reform Research Project(yjg203032).
文摘Smart city refers to the information system with Intemet of things and cloud computing as the core tec hnology and government management and industrial development as the core content,forming a large scale,heterogeneous and dynamic distributed Internet of things environment between different Internet of things.There is a wide demand for cooperation between equipment and management institutions in the smart city.Therefore,it is necessary to establish a trust mechanism to promote cooperation,and based on this,prevent data disorder caused by the interaction between honest terminals and malicious temminals.However,most of the existing research on trust mechanism is divorced from the Internet of things environment,and does not consider the characteristics of limited computing and storage capacity and large differences of Internet of hings devices,resuling in the fact that the research on abstract trust trust mechanism cannot be directly applied to the Internet of things;On the other hand,various threats to the Internet of things caused by security vulnerabilities such as collision attacks are not considered.Aiming at the security problems of cross domain trusted authentication of Intelligent City Internet of things terminals,a cross domain trust model(CDTM)based on self-authentication is proposed.Unlike most trust models,this model uses self-certified trust.The cross-domain process of internet of things(IoT)terminal can quickly establish a trust relationship with the current domain by providing its trust certificate stored in the previous domain interaction.At the same time,in order to alleviate the collision attack and improve the accuracy of trust evaluation,the overall trust value is calculated by comprehensively considering the quantity weight,time attenuation weight and similarity weight.Finally,the simulation results show that CDTM has good anti collusion attack ability.The success rate of malicious interaction will not increase significantly.Compared with other models,the resource consumption of our proposed model is significantly reduced.
基金supported by the National key research and development program of China(Grant No.2018YFD0500402)the National Natural Science Foundation of China(Grant No.31790412,Grant No.31672431)the National Key Basic Research Program of China(2013CB127302。
文摘Background:Long non-coding RNAs(lncRNAs)are emerging key regulators involved in a variety of biological processes such as cell differentiation and development.The balance between myogenesis and adipogenesis is crucial for skeletal muscle homeostasis in humans and meat quality in farm animals.The present study aimed to reveal the global transcriptomic profiles of adipogenic(Adi-)and myogenic(Myo-)precursors derived from porcine skeletal muscle and identify lncRNAs involved in the modulation of myogenesis homeostasis in porcine skeletal muscle.Results:In this study,a total of 655 novel individual lncRNAs including differentially expressed 24 lncRNAs,and 755 differentially expressed mRNAs were identified(fold change≥2 or≤0.5 and adjusted P<0.05).Integrated results of Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis accompanied by the variation of intracellular Ca2+concentration highlighted Lnc-ADAMTS9 involved in the modulation of myogenesis homeostasis in porcine skeletal muscle.Although Lnc-ADAMTS9 knock-down did not alter the mRNA expression of ADAMTS9,we demonstrated that Lnc-ADAMTS9 can promote myogenic proliferation and myogenic differentiation of myogenic precursors through inhibiting the ERK/MAPK signaling pathway.Conclusion:We deciphered a comprehensive catalog of mRNAs and lncRNAs that might be involved in the regulation of myogenesis and adipogenesis homeostasis in the skeletal muscle of pigs.The Lnc-ADAMTS9 exerts an essential role in myogenesis through the ERK signaling pathway.
基金supported by the National Natural Science Foundation of China (The key trusted running technologies for the sensing nodes in Internet of things: 61501007, The research of the trusted and security environment for high energy physics scientific computing system: 11675199)General Project of science and technology project of Beijing Municipal Education Commission: KM201610005023+2 种基金the outstanding personnel training program of Beijing municipal Party Committee Organization Department (The Research of Trusted Computing environment for Internet of things in Smart City: 2014000020124G041)The key technology research and validation issue for the emergency treatment telemedicine public service platform which integrates the military and civilian and bases on the broadband wireless networks (No.2013ZX03006001-005)the issue belongs to Major national science and technology projects
文摘Internet of things has been widely applied to industrial control, smart city and environmental protection, in these applica- tion scenarios, sensing node needs to make real-time response to the feedback control of the application layer. Therefore, it is nec- essary to monitor whether or not awareness nodes are trusted in real time, but the existing mechanisms for trusted certification lack the real-time measurement and tracking of the sensing node. To solve the above problems, this paper proposes a dynamic metric based authentication mechanism for sensing nodes of Internet of things. Firstly, the dynamic trustworthiness measure of the sensing nodes is carried out by introducing the computational function such as the trust function, the trust- worthiness risk assessment function, the feed- back control function and the active function of the sensing node. The dynamic trustworthi- ness measure of sensing nodes from multiple dimensions can effectively describe the change of trusted value of sensing nodes. Then, on the basis of this, a trusted attestation based on node trusted measure is realized by using the revocable group signature mechanism of local verifier. The mechanism has anonymity, un- forgeability and traceability, which is proved the security in the standard model. Simulationexperiments show that the proposed trusted attestation mechanism is flexible, practical and ef|Scient and has better attack resistance. It can effectively guarantee the reliable data transmission of nodes and realize the dynamic tracking of node reliability, which has a lower impact on system performance.
基金financially supported by the National Natural Science Foundation of China (Grant No. 31790412)National key research and development program of China (Grant No. 2018YFD0500402)the National Natural Science Foundation of China (Grant No. 31672431)
文摘Background:Cytosolic Ca^(2+)plays vital roles in myogenesis and muscle development.As a major Ca^(2+)release channel of endoplasmic reticulum(ER),ryanodine receptor 1(RyR1)key mutations are main causes of severe congenital myopathies.The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear.Results:In the present study,both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation,myotube formation as well as the potential mechanism of RyR1-related myopathies.We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation,accompanied by significantly elevated cytoplasmic Ca^(2+)concentration.Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor,dantrolene,significantly reduced cytosolic Ca^(2+)and blocked multinucleated myotube formation.The elevation of cytoplasmic Ca^(2+)concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition,demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca^(2+)release channel.However,RyR1-knockout-induced Ca^(2+)leakage led to the severe ER stress and excessive unfolded protein response,and drove myoblasts into apoptosis.Conclusions:Therefore,we concluded that Ca^(2+)release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion.This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies,and provides a potential target for regulation of muscle characteristics and meat quality.
基金supported by the National Natural Science Foundation of China Research on Dynamic Trusted Running Mechanism of Io T Heterogeneous Nodes: 61971014The research of the trusted and security environment for high energy physics scientific computing system: 11675199
文摘There are many heterogeneous sensing nodes in the sensing layer of the Internet of Things, and the amount of data transmission is huge, which puts high requirements on the allocation of network bandwidth. At the same time, untrusted sensing nodes maliciously invade network resources. Therefore, how to confirm whether a sensing node is trusted and reasonably allocate network resources is an urgent problem to be solved. To resolve this issue, this paper proposes a sensing network resource allocation model based on trusted groups. Through the sensing node computing environment and behavior measurement, we can identify and exclude untrusted nodes, so the trusted group can be built. Then the network resources are distributed from a global perspective. Based on the available bandwidth of the link, a network resource fusion model of IPv4 and IPv6 is proposed. On this basis, a global network resource allocation model is further proposed. Afterwards, real-time monitoring of data transmission behavior ensures data security during transmission. Simulation experiments show that this mechanism can effectively optimize the bandwidth allocation in the data transmission process and has little effect on the running efficiency of existing network applications. At the same time, it can effectively guarantee the trust of nodes and achieve trusted data transmission.
基金supported by Key Scientific Research Projects of Liaoning Provincial Medical Peak Construction Engineering,No.2010074
文摘A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects. In this study, we compared the efficacy of different lengths (6, 8, 10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects. At 16 weeks after the regeneration chamber was implanted, the number, diameter and myelin sheath thickness of the regenerated nerve fibers, as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio, were similar to that observed with autologous nerve transplantation. Our results demonstrate that 6-, 8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects. Because the chemoattractive capacity is not affected by the length of the nerve fragment, we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.
基金supported by the National Natural Science Foundation of China(The key trusted running technologies for the sensing nodes in Internet of things: 61501007The outstanding personnel training program of Beijing municipal Party Committee Organization Department (The Research of Trusted Computing environment for Internet of things in Smart City: 2014000020124G041
文摘According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing mechanism based on typical data center network architecture. The mechanism can make the network flow in its exclusive network link bandwidth and transmission path, which can improve the link utilization and the use of the network energy efficiency. Meanwhile, we apply trusted computing to guarantee the high security, high performance and high fault-tolerant routing forwarding service, which helps improving the average completion time of network flow.
基金Project supported by the Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Co.,Ltdthe National Natural Science Foundation of China(Grant Nos.11690042 and 12035019)+1 种基金the National Major Scientific Research Instrument Projects(Grant No.61727804)the Natural Science Foundation of Shaanxi Province,China(Grant No.2022-JM-386)。
文摘Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors(HEMTs)are experimentally investigated.It is observed that the reverse leakage current between the gate and source decreases after the off-state stress,whereas the current between the gate and drain increases.By analyzing those changes of the reverse currents based on the Frenkel–Poole model,we realize that the ionization of fluorine ions occurs during the off-state stress.Furthermore,threshold voltage degradation is also observed after the off-state stress,but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different.By comparing the differences between those devices,we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation.Lastly,suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078428)the Sichuan Outstanding Young Science and Technology Talent Project(Grant No.2020JDJQ0032).
文摘Clogging is a major geohazards risk in mechanized tunnelling through cohesive soils.Clay clogging results from the high adhesion between the clay and metal.Based on the water film theory and Reynolds fluid equation,the interfacial adhesion between metal and soil is simplified in this study as viscous hydrodynamic behavior between planes.Considering the influence of capillary force and the viscous force of water film at the interface between metal and soil,a theoretical calculation model of interfacial adhesion between metal and soil is established.The influence of water film thickness and separation rate on the interfacial adhesion between metal and soil is qualitatively analyzed.Then,the adhesion stress between the clay and the metal surface was tested with a pullout test and the influence of moisture content,pullout rates and types of clay minerals on the adhesion stress was analyzed.Finally,the calculation model of adhesion force was compared with the experimental results.The calculation model of soil adhesion stress established in this paper can quantitatively describe the relationship between soil adhesion force and moisture content and can also qualitatively reveal the influence mechanism of soil moisture content on adhesion stress.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078428)the Sichuan Outstanding Young Science and Technology Talent Project(Grant No.2020JDJQ0032).
文摘Clogging frequently occurs in the cutter head,excavation chamber or screw conveyor when an earth pressure balance(EPB)shield machine is tunneling in soft or silty clay ground with high clay mineral content.In this paper,montmorillonite,kaolinite,and illite were selected as research objects,and molecular dynamics simulation and laboratory experiment were adopted.At the microscopic scale,dynamic contact behavior and interfacial mechanical behavior of the interface between clay minerals and water/surfactant solution was simulated and the interfacial adhesion and conditioning mechanism between clay minerals and water/surfactant solution was revealed.Thus,sodium dodecyl benzene sulfonate surfactant was selected as the main composition of the soil conditioner.Then,the adhesion stress before and after soil conditioning and the contact angles between clay minerals and water/surfactant solution were tested and analyzed at the macroscopic scale.The result shows that the contact angle between droplet and clay mineral surface is an important parameter to characterize soil adhesion.The simulation rules of the microscopic contact angle are consistent with the experiment results.Furthermore,the adsorption energy between microscopic substances is dominated by electrostatic force,which can reflect the adhesion stress between macroscopic substances.Soil adhesion stress can be effectively decreased by adding the surfactant to the soil conditioner.
基金supported by the National Natural Science Foundation of China(22379054)and start-up funding from Jiangnan University.
文摘Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential approaches for converting and fixing CO_(2).Organic electrochemical synthesis is a promising method for utilizing CO_(2)because it transforms CO_(2)into higher-value chemicals.This review introduces the research aspects of CO_(2)conversion and the mechanisms of CO_(2)organic electrocarboxylation reactions.Recent progress in electrocarboxylation with CO_(2)is discussed,considering organic substrates and cathode types under different reaction mechanisms.Finally,the challenges and prospects in this field are highlighted with the aim of further promoting the fundamental understanding of CO_(2)organic electrocarboxylation.