0 INTRODUCTION Sedimentary exhalative(SEDEX)lead-zinc deposit was traditionally considered as a result of submarine hydrothermal exhalation,including exhalative plume and brine pool models(Izanloo et al.,2022;Spinks e...0 INTRODUCTION Sedimentary exhalative(SEDEX)lead-zinc deposit was traditionally considered as a result of submarine hydrothermal exhalation,including exhalative plume and brine pool models(Izanloo et al.,2022;Spinks et al.,2021;Maghfouri et al.,2020;Sangster,2020,2018;Huang et al.,2019;Rajabi et al.,2015;Goodfellow and Lydon,2007;Large et al.,2005,2001;Peng et al.,2000;Goodfellow et al.,1993;Figures 1a,1b).However,recognition of mineralization as subseafloor hydrothermal replacement in a few SEDEX deposits has challenged the traditional consideration(Magnall et al.,2023,2021,2020a,b;Hayward et al.,2021;Figure 1c).Researchers come to believe that subseafloor replacement rather than submarine exhalation is a dominant process for SEDEX mineralization,but this needs to be examined through more case studies.展开更多
The Tethyan domain hosts the world's most abundant hydrocarbon and Mississippi Valley-type(MVT) Pb-Zn resources. The relations among organic matter-rich sediments, MVT Pb-Zn mineralization, and the Tethyan tectoni...The Tethyan domain hosts the world's most abundant hydrocarbon and Mississippi Valley-type(MVT) Pb-Zn resources. The relations among organic matter-rich sediments, MVT Pb-Zn mineralization, and the Tethyan tectonic evolution history are an important scientific issue. The data of paleogeographic reconstruction indicate that the Proto-, Paleo-, and NeoTethys oceans mainly lay in low latitude areas between 30°N and 45°S. The high temperature and precipitation and the lack of sea water overturning in stagnant basins resulted in high marine biological productivity and good preservation conditions for organic matter-rich sediments. Consequently, abundant organic matter-rich sediments were developed and preserved in the Tethyan domain and thus created abundant hydrocarbon resources. Mineralization age data demonstrate that MVT deposits mainly formed during the continent-continent convergence in the late stage of the Tethyan tectonic evolution. Deposits are located in the fold-and-thrust belts and forelands of the continent-continent convergence orogen, and spatially associated with hydrocarbon basins. Organic matter-rich sediments are well developed in MVT ore districts, where hydrocarbon activity appeared earlier than or nearly simultaneous with the Pb-Zn mineralization event. Hydrocarbon activity generally began earlier than the Pb-Zn mineralization in individual deposits. Organic matter-rich sediments and hydrocarbons mainly play the role of reducing agents in the MVT Pb-Zn mineralization process. Through bacterial or thermal reduction, dissolved sulfates from sedimentary strata were reduced to generate reduced sulfur for Pb-Zn sulfide mineralization. In summary, the Tethyan oceans have long been in low latitude areas near the equator, making the Tethyan domain develop abundant organic matterrich sediments and associated hydrocarbon resources which reduce sulfates to provide sufficient reduced sulfur for MVT PbZn mineralization in the region.展开更多
Mississippi Valley-type(MVT)Pb-Zn deposits serve as the world’s major supply of Pb-Zn resources.However,the age constraint of MVT Pb-Zn deposits has long been a big challenge,due to the lack of minerals that are uneq...Mississippi Valley-type(MVT)Pb-Zn deposits serve as the world’s major supply of Pb-Zn resources.However,the age constraint of MVT Pb-Zn deposits has long been a big challenge,due to the lack of minerals that are unequivocally related to ore deposition and that can be used for radioisotopic dating.Here we show sporopollens can provide useful chronological information on the Changdong MVT Pb-Zn deposit in the Simao basin,Sanjiang belt,West China.The Pb-Zn ores in the Changdong deposit are hosted by internal sediments in paleo-karst caves of meteoric origin.Sphalerite and galena occur as replacements of carbonate minerals and void infillings in the internal sediments.The relations suggest that the Pb-Zn mineralization occurred after the deposition of the internal sediments.A palynological assemblage mainly composed of angiosperm pollen dominated by Castanea,Quercus,and Carya and fern spores dominated by Polypodiaceae,Pteris,and Athyriaceae was identified.These pollen and spores place the ore-hosting internal sediments and the Changdong paleo-karst at early to middle Oligocene.Consequently,the Changdong Pb-Zn deposit must have formed after the early Oligocene(~34 Ma).These age constraints,together with the geological characteristics,indicate that the Changdong Pb-Zn deposit is a paleo-karst-controlled MVT deposit related to fold-thrust systems in the Sanjiang belt.The Changdong deposit is similar to other MVT Pb-Zn deposits in the northern part of the Sanjiang belt,making it possible to extend this Pb-Zn belt 500 km further to the South.Results presented here highlights the potential of sporopollens in dating the age of MVT deposits related to paleo-karst formation in young orogenic belts.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42372115,92155305,92055314)the Innovation Capability Support Program of Shaanxi Province(No.2022KJXX-91)+2 种基金the Basic Research Program of Natural Science in Shaanxi Province(No.2023-JC-QN-0281)the International Geoscience Program(NoIGCP-741)China Geological Survey(No.DD20201159).
文摘0 INTRODUCTION Sedimentary exhalative(SEDEX)lead-zinc deposit was traditionally considered as a result of submarine hydrothermal exhalation,including exhalative plume and brine pool models(Izanloo et al.,2022;Spinks et al.,2021;Maghfouri et al.,2020;Sangster,2020,2018;Huang et al.,2019;Rajabi et al.,2015;Goodfellow and Lydon,2007;Large et al.,2005,2001;Peng et al.,2000;Goodfellow et al.,1993;Figures 1a,1b).However,recognition of mineralization as subseafloor hydrothermal replacement in a few SEDEX deposits has challenged the traditional consideration(Magnall et al.,2023,2021,2020a,b;Hayward et al.,2021;Figure 1c).Researchers come to believe that subseafloor replacement rather than submarine exhalation is a dominant process for SEDEX mineralization,but this needs to be examined through more case studies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 92155305, 91855214, and 42125204)the National Key R&D Plan (Grant No. 2021YFC2901805)。
文摘The Tethyan domain hosts the world's most abundant hydrocarbon and Mississippi Valley-type(MVT) Pb-Zn resources. The relations among organic matter-rich sediments, MVT Pb-Zn mineralization, and the Tethyan tectonic evolution history are an important scientific issue. The data of paleogeographic reconstruction indicate that the Proto-, Paleo-, and NeoTethys oceans mainly lay in low latitude areas between 30°N and 45°S. The high temperature and precipitation and the lack of sea water overturning in stagnant basins resulted in high marine biological productivity and good preservation conditions for organic matter-rich sediments. Consequently, abundant organic matter-rich sediments were developed and preserved in the Tethyan domain and thus created abundant hydrocarbon resources. Mineralization age data demonstrate that MVT deposits mainly formed during the continent-continent convergence in the late stage of the Tethyan tectonic evolution. Deposits are located in the fold-and-thrust belts and forelands of the continent-continent convergence orogen, and spatially associated with hydrocarbon basins. Organic matter-rich sediments are well developed in MVT ore districts, where hydrocarbon activity appeared earlier than or nearly simultaneous with the Pb-Zn mineralization event. Hydrocarbon activity generally began earlier than the Pb-Zn mineralization in individual deposits. Organic matter-rich sediments and hydrocarbons mainly play the role of reducing agents in the MVT Pb-Zn mineralization process. Through bacterial or thermal reduction, dissolved sulfates from sedimentary strata were reduced to generate reduced sulfur for Pb-Zn sulfide mineralization. In summary, the Tethyan oceans have long been in low latitude areas near the equator, making the Tethyan domain develop abundant organic matterrich sediments and associated hydrocarbon resources which reduce sulfates to provide sufficient reduced sulfur for MVT PbZn mineralization in the region.
基金supported by the National Natural Science Foundation of China(Grant Nos.41922022,41773042,41773043,41772088,and 41472067)the Strategic Priority Research Program of Chinese Academy of Sciences,China(Grant No.XDA20070304)+2 种基金the Key Laboratory of Deep-Earth Dynamics of the Ministry of Natural Resources(Grant No.J1901-6)the Basic Scientific Research Foundation of the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.2105)the IGCP-662 Program。
文摘Mississippi Valley-type(MVT)Pb-Zn deposits serve as the world’s major supply of Pb-Zn resources.However,the age constraint of MVT Pb-Zn deposits has long been a big challenge,due to the lack of minerals that are unequivocally related to ore deposition and that can be used for radioisotopic dating.Here we show sporopollens can provide useful chronological information on the Changdong MVT Pb-Zn deposit in the Simao basin,Sanjiang belt,West China.The Pb-Zn ores in the Changdong deposit are hosted by internal sediments in paleo-karst caves of meteoric origin.Sphalerite and galena occur as replacements of carbonate minerals and void infillings in the internal sediments.The relations suggest that the Pb-Zn mineralization occurred after the deposition of the internal sediments.A palynological assemblage mainly composed of angiosperm pollen dominated by Castanea,Quercus,and Carya and fern spores dominated by Polypodiaceae,Pteris,and Athyriaceae was identified.These pollen and spores place the ore-hosting internal sediments and the Changdong paleo-karst at early to middle Oligocene.Consequently,the Changdong Pb-Zn deposit must have formed after the early Oligocene(~34 Ma).These age constraints,together with the geological characteristics,indicate that the Changdong Pb-Zn deposit is a paleo-karst-controlled MVT deposit related to fold-thrust systems in the Sanjiang belt.The Changdong deposit is similar to other MVT Pb-Zn deposits in the northern part of the Sanjiang belt,making it possible to extend this Pb-Zn belt 500 km further to the South.Results presented here highlights the potential of sporopollens in dating the age of MVT deposits related to paleo-karst formation in young orogenic belts.