期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Abnormal mechanochemical effect in ultraprecision machining of an additively manufactured precipitation-strengthened high-entropy alloy
1
作者 Long Xu yuchao bai +5 位作者 Yunfa Guo Chang Ren Xiaohua Tan Yandong Jia Gang Wang Hao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期221-237,共17页
Recently,researchers have explored the use of precipitation strengthening and finer microstructures with high-density dislocations in additive manufacturing to produce high-entropy alloys(HEAs)with adjustable properti... Recently,researchers have explored the use of precipitation strengthening and finer microstructures with high-density dislocations in additive manufacturing to produce high-entropy alloys(HEAs)with adjustable properties.However,the inherent surface roughness and lack of machinability research in AMed HEAs limit their engineering applications.In this study,we systematically investigated the microstructural characteristics,mechanical properties,and machinability of Fe_(29.3)Co_(28.7)Ni_(28.6)Al_(6.8)Ti_(6.6)(at.%)HEAs with three different structures:single FCC phase cellular(SPC),dual precipitation-strengthened(DPS),and single precipitation-strengthened(SPS).These structures were fabricated by selective laser melting and isothermally annealing at 780 and 940℃.Compared to SPC HEA,DPS HEA exhibits a significant increase in yield strength and ultimate tensile strength but with a dramatic sacrifice in ductility.SPS HEA exhibits similar mechanical properties to SPC HEA due to the pronounced coarsening of L21 precipitates.The ultraprecision machining micro-cutting test showed that SPC HEA had a significant mechanochem-ical effect,as evidenced by a sharp drop in cutting force for inked workpieces,but not DPS HEA.An abnormal finding was that the negligible reflection of cutting force for SPS HEAs suggested a negative mechanochemical effect,even though SPS HEA had equally excellent plasticity like SPC HEA.It was found that nanocrystallization-induced strength enhancement and ductility reduction of SPS HEA lead to chips’deformation dominated by shear avalanche rather than chip folding of SPC HEA,which involves the reduction of surface energy and friction of chips’interfaces.Overall,these results and our research findings may guide the machining of AMed precipitation-strengthened HEAs and accelerate their engineering ap-plication. 展开更多
关键词 High-entropy alloy Selective laser melting Precipitation strengthening MACHINABILITY Mechanochemical effect
原文传递
Influence Mechanism of Process Parameters on Relative Density, Influence Mechanism of Process Parameters on Relative Density, Microstructure, and Mechanical Properties of Low Sc-Content Al-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting 被引量:1
2
作者 Di Wang Yongwei Feng +6 位作者 Linqing Liu Xiongmian Wei Yongqiang Yang Pan Yuan Yang Liu Changjun Han yuchao bai 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2022年第4期3-15,共13页
Additive manufacturing of Al-Mg-Sc-Zr alloys is a promising technique for the fabrication of lightweight components with complex shapes.In this study,the effect of the process parameters of selective laser melting(SLM... Additive manufacturing of Al-Mg-Sc-Zr alloys is a promising technique for the fabrication of lightweight components with complex shapes.In this study,the effect of the process parameters of selective laser melting(SLM)on the surface morphology,relative density,microstructure,and mechanical properties of Al-Mg-Sc-Zr high-strength aluminum alloys with low Sc content was systematically investigated.The results show that the energy density has an important effect on the surface quality and densification behavior of the Al-Mg-Sc-Zr alloy during the SLM process.As the energy density increased,the surface quality and the number of internal pores increased.However,the area of the fine-grained region at the boundary of the molten pool gradually decreased.When the laser energy density was set to 151.52 J/mm3,a low-defect sample with a relative density of 99.2%was obtained.After heat treatment,the area of the fine grains at the boundary increased significantly,thereby contributing to the excellent mechanical properties.The microstructure was characterized by a unique“fan-shaped”heterogeneous structure.As the energy density increased,the microhardness first increased and then decreased,reaching a maximum value of 122 HV0.3.With the optimized process parameters,the yield strength(YS),ultimate tensile strength(UTS),and elongation of the as-built Al-Mg-Sc-Zr alloys were 346.8±3.0 MPa,451.1±5.2 MPa,14.6%±0.8%,respectively.After heat treatment at 325°C for 8 h,the hardness increased by 38.5%to 169 HV0.3,and the YS and UTS increased by 41.3%and 18.1%,respectively,to 490.0±9.0 MPa and 532.7±7.8 MPa,respectively,while the elongation slightly decreased to 13.1%±0.7%. 展开更多
关键词 Selective laser melting Al-Mg-Sc-Zr alloy Process parameter Relative density MICROSTRUCTURE Mechanical property Surface morphology
原文传递
Low-temperature superplasticity of β-stabilized Ti-43Al-9V-Y alloy sheet with bimodalγ-grain-size distribution
3
作者 Yu Zhang Shuai Chang +5 位作者 Yuyong Chen yuchao bai Cuiling Zhao Xiaopeng Wang Jun Min Xue Hao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期225-236,共12页
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100℃was systematically investigated in the temperature range of 750-900℃under an initial strain rate of 10^(-4)s^(-1).A bimodalγgraindistribution mi... The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100℃was systematically investigated in the temperature range of 750-900℃under an initial strain rate of 10^(-4)s^(-1).A bimodalγgraindistribution microstructure of Ti Al alloy sheet,with abundant nano-scale or sub-micronγlaths embedded insideβmatrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m=0.27 at 800℃,which is the lowest temperature of superplastic deformation for Ti Al alloys attained so far.The maximum elongation reaches~360%at 900℃with an initial strain rate of 2.0×10^(-4)s^(-1).To elucidate the softening mechanism of the disorderedβphase during superplastic deformation,the changes of phase composition were investigated up to 1000℃using in situ high-temperature X-ray diffraction(XRD)in this study.The results indicate thatβphase does not undergo the transformation from an ordered L2;structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of bothγandβdynamic recrystallization(DR)after tensile tests as characterized with electron backscatter diffraction(EBSD),the superplastic deformation mechanism can be explained by the combination of DR and grain boundary slipping(GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic deformation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic Ti Al alloy. 展开更多
关键词 Titanium aluminides Hot-rolled alloy sheet Bimodal microstructure In situ high-temperature XRD SUPERPLASTICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部