Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper...Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper level of human-digital interactions.With the rapid evolution of couplers,waveguide-based AR displays have streamlined the entire system,boasting a slim form factor and high optical performance.However,challenges persist in the waveguide combiner,including low optical efficiency and poor image uniformity,significantly hindering the long-term usage and user experience.In this paper,we first analyze the root causes of the low optical efficiency and poor uniformity in waveguide-based AR displays.We then discover and elucidate an anomalous polarization conversion phenomenon inherent to polarization volume gratings(PVGs)when the incident light direction does not satisfy the Bragg condition.This new property is effectively leveraged to circumvent the tradeoff between in-coupling efficiency and eyebox uniformity.Through feasibility demonstration experiments,we measure the light leakage in multiple PVGs with varying thicknesses using a laser source and a liquid-crystal-on-silicon light engine.The experiment corroborates the polarization conversion phenomenon,and the results align with simulation well.To explore the potential of such a polarization conversion phenomenon further,we design and simulate a waveguide display with a 50°field of view.Through achieving first-order polarization conversion in a PVG,the in-coupling efficiency and uniformity are improved by 2 times and 2.3 times,respectively,compared to conventional couplers.This groundbreaking discovery holds immense potential for revolutionizing next-generation waveguide-based AR displays,promising a higher efficiency and superior image uniformity.展开更多
Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this stud...Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.展开更多
In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of foc...In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in glu- tathione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion injury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso- ciated with its antioxidant activities.展开更多
Herein,we describe the selective formation of a barrel-shaped or a ball-shaped fluorescent metallacage by controlling the shape and stoichiometry of the building blocks.Specifically,the tetraphenylethylene-based donor...Herein,we describe the selective formation of a barrel-shaped or a ball-shaped fluorescent metallacage by controlling the shape and stoichiometry of the building blocks.Specifically,the tetraphenylethylene-based donor and two acceptors with different numbers of Pt(Ⅱ)centers were combined via coordination-driven self-assembly.Owing to the differences in the shapes of the assemblies,the resultant ball-shaped metallacage displayed stronger and blue-shifted fluorescence compared to the barrel-shaped one in dilute solutions,while a reversal of fluorescence intensities was observed in the aggregation process.Overall,this work demonstrates that the photophysical properties of supramolecular coordination complexes can be affected by subtle geometrical factors,which can be controlled precisely at the molecular level.展开更多
Dear Editor,The global pandemic of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron variant has resulted in its continuous evolution and the emergence of numerous subvariants of Omicron(https://gisai...Dear Editor,The global pandemic of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron variant has resulted in its continuous evolution and the emergence of numerous subvariants of Omicron(https://gisaid.org/).Currently,possibly owing to the increased evasion of neutralizing antibodies elicited by previous infection and vaccination and the higher transmissibility,the BA.5 variant has replaced BA.2 variant and dominated the pandemic.展开更多
文摘Augmented reality(AR)displays,heralded as the next-generation platform for spatial computing,metaverse,and digital twins,empower users to perceive digital images overlaid with real-world environment,fostering a deeper level of human-digital interactions.With the rapid evolution of couplers,waveguide-based AR displays have streamlined the entire system,boasting a slim form factor and high optical performance.However,challenges persist in the waveguide combiner,including low optical efficiency and poor image uniformity,significantly hindering the long-term usage and user experience.In this paper,we first analyze the root causes of the low optical efficiency and poor uniformity in waveguide-based AR displays.We then discover and elucidate an anomalous polarization conversion phenomenon inherent to polarization volume gratings(PVGs)when the incident light direction does not satisfy the Bragg condition.This new property is effectively leveraged to circumvent the tradeoff between in-coupling efficiency and eyebox uniformity.Through feasibility demonstration experiments,we measure the light leakage in multiple PVGs with varying thicknesses using a laser source and a liquid-crystal-on-silicon light engine.The experiment corroborates the polarization conversion phenomenon,and the results align with simulation well.To explore the potential of such a polarization conversion phenomenon further,we design and simulate a waveguide display with a 50°field of view.Through achieving first-order polarization conversion in a PVG,the in-coupling efficiency and uniformity are improved by 2 times and 2.3 times,respectively,compared to conventional couplers.This groundbreaking discovery holds immense potential for revolutionizing next-generation waveguide-based AR displays,promising a higher efficiency and superior image uniformity.
基金funded by the Engineering and Physical Science Research Council(EPSRC),UK(Grant Nos.EP/P027563/1 and EP/M028267/1)the Science and Technology Facilities Council(STFC)(Grant No.ST/R006105/1)the Bridging for Innovators Programme of Department for Business,Energy and Industrial Strategy(BEIS),UK.
文摘Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.
基金supported by the National Natural Science Foundation of China,No.81001457,81072686University Scientific Research Projects of Anhui Province in China,No.KJ2012B104Key Program of University Scientific Research Projects of Anhui Province in China,No.2006kj095A
文摘In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in glu- tathione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion injury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso- ciated with its antioxidant activities.
基金financially supported by Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA16)Shanghai Sailing Program(No.20YF1422600)+1 种基金Natural Science Foundation of Shanghai(No.22dz1207603)National Natural Science Foundation of China(Nos.32101092 and 21901161).
文摘Herein,we describe the selective formation of a barrel-shaped or a ball-shaped fluorescent metallacage by controlling the shape and stoichiometry of the building blocks.Specifically,the tetraphenylethylene-based donor and two acceptors with different numbers of Pt(Ⅱ)centers were combined via coordination-driven self-assembly.Owing to the differences in the shapes of the assemblies,the resultant ball-shaped metallacage displayed stronger and blue-shifted fluorescence compared to the barrel-shaped one in dilute solutions,while a reversal of fluorescence intensities was observed in the aggregation process.Overall,this work demonstrates that the photophysical properties of supramolecular coordination complexes can be affected by subtle geometrical factors,which can be controlled precisely at the molecular level.
基金supported in part by the National Science and Technology Major Project (No.2021YFC2301803)Shenzhen Fund for Guangdong Provincial High-Level Clinical Key Specialties (No.SZGSP011)the clinical research project of Shenzhen Third People’s Hospital (No.G2022044).
文摘Dear Editor,The global pandemic of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)Omicron variant has resulted in its continuous evolution and the emergence of numerous subvariants of Omicron(https://gisaid.org/).Currently,possibly owing to the increased evasion of neutralizing antibodies elicited by previous infection and vaccination and the higher transmissibility,the BA.5 variant has replaced BA.2 variant and dominated the pandemic.