Lithium (Li) metal is a promising anode for the next generation high-energy–density batteries. However, the growth of Li dendrites, low coulombic efficiency and dramatic volume change limit its development. Here, we ...Lithium (Li) metal is a promising anode for the next generation high-energy–density batteries. However, the growth of Li dendrites, low coulombic efficiency and dramatic volume change limit its development. Here, we report a new synthetic poly-dioxolane (PDOL) approach to constructing an artificial 'elastic' SEI to stabilize the Li/electrolyte interface and the Li deposition/dissolution behavior in a variety of electrolytes. By coating PDOL with optimized molecular weights and synthetic routes on Li metal anode, the 'elastic' SEI layer could be maintained on top of the Li metal anode to accommodate the Li deposition/dissolution. No dendrite formation was observed during the cycling process, and the interfacial side reactions were reduced significantly. Consequently, we successfully achieved 330 cycles with a CE of 98.4% in ether electrolytes and 90 cycles with a CE of 94.3% in carbonate electrolytes. Simultaneously, the Li-metal batteries with LiFePO_(4) as cathodes also exhibited improved cycling performance. This strategy could promote the development of dendrite-free metal anodes toward high-performance Li-metal batteries.展开更多
基金This research was supported financially by the Major Program of the National Natural Science Foundation of China(21890731).
文摘Lithium (Li) metal is a promising anode for the next generation high-energy–density batteries. However, the growth of Li dendrites, low coulombic efficiency and dramatic volume change limit its development. Here, we report a new synthetic poly-dioxolane (PDOL) approach to constructing an artificial 'elastic' SEI to stabilize the Li/electrolyte interface and the Li deposition/dissolution behavior in a variety of electrolytes. By coating PDOL with optimized molecular weights and synthetic routes on Li metal anode, the 'elastic' SEI layer could be maintained on top of the Li metal anode to accommodate the Li deposition/dissolution. No dendrite formation was observed during the cycling process, and the interfacial side reactions were reduced significantly. Consequently, we successfully achieved 330 cycles with a CE of 98.4% in ether electrolytes and 90 cycles with a CE of 94.3% in carbonate electrolytes. Simultaneously, the Li-metal batteries with LiFePO_(4) as cathodes also exhibited improved cycling performance. This strategy could promote the development of dendrite-free metal anodes toward high-performance Li-metal batteries.