期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Anisotropic shearing mechanism of Kangding slate:Experimental investigation and numerical analysis
1
作者 Ping Liu Quansheng Liu +4 位作者 Penghai Deng yucong pan Yiming Lei Chenglei Du Xianqi Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1487-1504,共18页
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ... The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm. 展开更多
关键词 ANISOTROPY Empirical expression of cohesion foliation angles Combined finite-discrete element method(FDEM) Shear rate Element size
下载PDF
Robust model for tunnel squeezing using Bayesian optimized classifiers with partially missing database 被引量:2
2
作者 Yin Bo Xing Huang +5 位作者 yucong pan Yanfang Feng Penghai Deng Feng Gao Ping Liu Quansheng Liu 《Underground Space》 SCIE EI CSCD 2023年第3期91-117,共27页
Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engine... Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and its prediction will be more accurate as more data is collected and trained for prewarning the tunnel squeezing hazard. 展开更多
关键词 Tunnel squeezing hazard Bayesian optimization Machine learning techniques Sparrow search algorithm Ensemble classifier Incomplete database
原文传递
QPSO-ILF-ANN-based optimization of TBM control parameters considering tunneling energy efficiency 被引量:1
3
作者 Xinyu WANG Jian WU +6 位作者 Xin YIN Quansheng LIU Xing HUANG yucong pan Jihua YANG Lei HUANG Shuangping MIAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第1期25-36,共12页
In recent years, tunnel boring machines (TBMs) have been widely used in tunnel construction. However, the TBM control parameters set based on operator experience may not necessarily be suitable for certain geological ... In recent years, tunnel boring machines (TBMs) have been widely used in tunnel construction. However, the TBM control parameters set based on operator experience may not necessarily be suitable for certain geological conditions. Hence, a method to optimize TBM control parameters using an improved loss function-based artificial neural network (ILF-ANN) combined with quantum particle swarm optimization (QPSO) is proposed herein. The purpose of this method is to improve the TBM performance by optimizing the penetration and cutterhead rotation speeds. Inspired by the regularization technique, a custom artificial neural network (ANN) loss function based on the penetration rate and rock-breaking specific energy as TBM performance indicators is developed in the form of a penalty function to adjust the output of the network. In addition, to overcome the disadvantage of classical error backpropagation ANNs, i.e., the ease of falling into a local optimum, QPSO is adopted to train the ANN hyperparameters (weight and bias). Rock mass classes and tunneling parameters obtained in real time are used as the input of the QPSO-ILF-ANN, whereas the cutterhead rotation speed and penetration are specified as the output. The proposed method is validated using construction data from the Songhua River water conveyance tunnel project. Results show that, compared with the TBM operator and QPSO-ANN, the QPSO-ILF-ANN effectively increases the TBM penetration rate by 14.85% and 13.71%, respectively, and reduces the rock-breaking specific energy by 9.41% and 9.18%, respectively. 展开更多
关键词 tunnel boring machine control parameter optimization quantum particle swarm optimization artificial neural network tunneling energy efficiency
原文传递
Compressive strength prediction of sprayed concrete lining in tunnel engineering using hybrid machine learning techniques
4
作者 Xin Yin Feng Gao +3 位作者 Jian Wu Xing Huang yucong pan Quansheng Liu 《Underground Space》 SCIE EI 2022年第5期928-943,共16页
Sprayed concrete lining is a commonly employed support measure in tunnel engineering,which plays an important role in construction safety.Compressive strength is a key performance indicator of sprayed concrete lining,... Sprayed concrete lining is a commonly employed support measure in tunnel engineering,which plays an important role in construction safety.Compressive strength is a key performance indicator of sprayed concrete lining,and the traditional measuring method is time-consuming and laborious.This paper proposes various hybrid machine learning algorithms to accomplish the advanced prediction of compressive strength of sprayed concrete lining based on the mixture design.Two hundred and five sets of experimental data were collected from a water conveyance tunnel in northwestern China for model construction,and each set of data was made up of six basic input variables(i.e.,water,cement,mineral powder,superplasticizer,coarse aggregate,and fine aggregate)and one output variable(i.e.,compressive strength).In order to eliminate the correlation between input variables,a new composite indicator(i.e.,the water-binder ratio)was introduced to achieve dimensionality reduction.After that,four hybrid models in total were built,namely BPNN-QPSO,SVR-QPSO,ELM-QPSO,and RF-QPSO,where the hyper-parameters of BPNN,SVR,ELM,and RF were auto-tuned by QPSO.Engineering application results indicated that RF-QPSO achieved the lowest mean absolute percentage error(MAPE)of 3.47% and root mean square error(RMSE)of 1.30 and the highest determination coefficient(R^(2))of 0.93 in the four hybrid models.Moreover,RFQPSO had the shortest running time of 0.15 s,followed by SVR-QPSO(0.18 s),ELM-QPSO(1.19 s),and BPNN-QPSO(1.58 s).Compared with BPNN-QPSO,SVR-QPSO,and ELM-QPSO,RF-QPSO performed the most superior performance in terms of both prediction accuracy and running speed.Finally,the importance of input variables on the model performance was quantitatively evaluated,further enhancing the interpretability of RF-QPSO. 展开更多
关键词 Intelligent construction Hybrid machine learning Sprayed concrete lining Compressive strength prediction Tunnel engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部