Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage spac...Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage space.Herein,the activated carbon-hybridized and amine-modified nanofibers are prepared by integrating activated carbon(AC)and polyacrylonitrile(PAN)via electrospinning method and the subsequent amination,which could provide additional storage space and adsorption groups for ultrahigh adsorption capability.Thus,the obtained amine-rich porous PAN nanofibers(APAN/AC)readily realized the ultrahigh adsorption capacity for metal ions and dyes in wastewater.Specifically,the adsorption capacity of APAN/AC nanofibers were 284 mg·g^(-1) for Cr(VI)and 248 mg·g^(-1) for methyl orange,which were almost 2 and 4 times than that of amine-modified nanofibers(APAN)and carbon-hybridized nanofibers(PAN/AC),respectively.Moreover,the AC inhibited the chain mobility of polymer matrix and thereby endowing APAN/AC nanofibers with excellent recyclability.The adsorption capability retained 80%after nine adsorption-desorption cycles.The adsorption kinetics and corresponding mechanism were further explored.This strategy combines the advantages of polymer nanofibers and AC,opening a new avenue for developing next-generation absorbent materials.展开更多
基金This work is supported by Natural Science Foundation of Henan Province(Grant No.182300410276)the National Natural Science Foundation of China(Grant No.51904274)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.19IRTSTHN028).
文摘Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage space.Herein,the activated carbon-hybridized and amine-modified nanofibers are prepared by integrating activated carbon(AC)and polyacrylonitrile(PAN)via electrospinning method and the subsequent amination,which could provide additional storage space and adsorption groups for ultrahigh adsorption capability.Thus,the obtained amine-rich porous PAN nanofibers(APAN/AC)readily realized the ultrahigh adsorption capacity for metal ions and dyes in wastewater.Specifically,the adsorption capacity of APAN/AC nanofibers were 284 mg·g^(-1) for Cr(VI)and 248 mg·g^(-1) for methyl orange,which were almost 2 and 4 times than that of amine-modified nanofibers(APAN)and carbon-hybridized nanofibers(PAN/AC),respectively.Moreover,the AC inhibited the chain mobility of polymer matrix and thereby endowing APAN/AC nanofibers with excellent recyclability.The adsorption capability retained 80%after nine adsorption-desorption cycles.The adsorption kinetics and corresponding mechanism were further explored.This strategy combines the advantages of polymer nanofibers and AC,opening a new avenue for developing next-generation absorbent materials.