With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
An accurate probability distribution model of wind speed is critical to the assessment of reliability contribution of wind energy to power systems. Most of current models are built using the parametric density estimat...An accurate probability distribution model of wind speed is critical to the assessment of reliability contribution of wind energy to power systems. Most of current models are built using the parametric density estimation(PDE) methods, which usually assume that the wind speed are subordinate to a certain known distribution(e.g. Weibull distribution and Normal distribution) and estimate the parameters of models with the historical data. This paper presents a kernel density estimation(KDE) method which is a nonparametric way to estimate the probability density function(PDF) of wind speed. The method is a kind of data-driven approach without making any assumption on the form of the underlying wind speed distribution, and capable of uncovering the statistical information hidden in the historical data. The proposed method is compared with three parametric models using wind data from six sites.The results indicate that the KDE outperforms the PDE in terms of accuracy and flexibility in describing the longterm wind speed distributions for all sites. A sensitivity analysis with respect to kernel functions is presented and Gauss kernel function is proved to be the best one. Case studies on a standard IEEE reliability test system(IEEERTS) have verified the applicability and effectiveness of the proposed model in evaluating the reliability performance of wind farms.展开更多
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
基金supported in part by the National Natural Science Foundation of China(No.51307185)Natural Science Foundation Project of CQ CSTC(No.cstc2012jjA90004)the Fundamental Research Funds for the Central Universities(No.CDJPY12150002)
文摘An accurate probability distribution model of wind speed is critical to the assessment of reliability contribution of wind energy to power systems. Most of current models are built using the parametric density estimation(PDE) methods, which usually assume that the wind speed are subordinate to a certain known distribution(e.g. Weibull distribution and Normal distribution) and estimate the parameters of models with the historical data. This paper presents a kernel density estimation(KDE) method which is a nonparametric way to estimate the probability density function(PDF) of wind speed. The method is a kind of data-driven approach without making any assumption on the form of the underlying wind speed distribution, and capable of uncovering the statistical information hidden in the historical data. The proposed method is compared with three parametric models using wind data from six sites.The results indicate that the KDE outperforms the PDE in terms of accuracy and flexibility in describing the longterm wind speed distributions for all sites. A sensitivity analysis with respect to kernel functions is presented and Gauss kernel function is proved to be the best one. Case studies on a standard IEEE reliability test system(IEEERTS) have verified the applicability and effectiveness of the proposed model in evaluating the reliability performance of wind farms.