The phosphate glasses doped with Eu2+, Gd3+, respectively, and co-doped with Gd3+ and Eu2+ were prepared by high-temperature melting method. The transmission spectra, the excitation spectra, the emission spectra a...The phosphate glasses doped with Eu2+, Gd3+, respectively, and co-doped with Gd3+ and Eu2+ were prepared by high-temperature melting method. The transmission spectra, the excitation spectra, the emission spectra and the fluorescent decay time were investigated. The energy transfer process between Gd3+ and Eu2+ was studied. From the excitation spectra and the emission spectra of the phosphate glasses doped with Eu2+, we observed that the emission intensity of Eu2+ shows higher for 0.02 mol% Eu2+-doped phosphate glass. According to the excitation spectra and the emission spectra and the fluorescence decay curves, when the concentration of Eu2+ was 0.02 mol%, the optimal con- centration of Gd3+ was 0.3 tool%. Based on Dexter theory, it is shown that the energy transfer between Gd3+ and Eu2+ was nonradiation energy transfer by analyzing the energy-level diagram. The fluorescence decay curves of Gd3+ were expressed by the Inokuti-Hirayama's model and were used to analyze energy transfer mechanism between Gd3+ and Eu2+. And the energy transfer efficiency was also calculated.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.61275180 and 51472125)the Natural Science Foundation of Ningbo City (No.2013A610126)+1 种基金the Outstanding Dissertation Growth Foundation of Ningbo University (No.PY2013009)the K.C.Wong Magna Fund in Ningbo University
文摘The phosphate glasses doped with Eu2+, Gd3+, respectively, and co-doped with Gd3+ and Eu2+ were prepared by high-temperature melting method. The transmission spectra, the excitation spectra, the emission spectra and the fluorescent decay time were investigated. The energy transfer process between Gd3+ and Eu2+ was studied. From the excitation spectra and the emission spectra of the phosphate glasses doped with Eu2+, we observed that the emission intensity of Eu2+ shows higher for 0.02 mol% Eu2+-doped phosphate glass. According to the excitation spectra and the emission spectra and the fluorescence decay curves, when the concentration of Eu2+ was 0.02 mol%, the optimal con- centration of Gd3+ was 0.3 tool%. Based on Dexter theory, it is shown that the energy transfer between Gd3+ and Eu2+ was nonradiation energy transfer by analyzing the energy-level diagram. The fluorescence decay curves of Gd3+ were expressed by the Inokuti-Hirayama's model and were used to analyze energy transfer mechanism between Gd3+ and Eu2+. And the energy transfer efficiency was also calculated.