With the fast development of integrated circuit devices as well as batteries with high energy densities,the thermal management of electronic components is becoming increasingly crucial to maintaining their reliable op...With the fast development of integrated circuit devices as well as batteries with high energy densities,the thermal management of electronic components is becoming increasingly crucial to maintaining their reliable operations.Boron nitride nanosheets(BNNS),which have superhigh thermal conductivity along the in-plane direction while remaining electrically insulating,were widely regarded as an ideal filler for preparing high-performance polymer composites to address the‘‘thermal failure''issue.However,due to the instinctive rigidity of BNNS,the nanosheets are unable to form a tightly interfacial contact between the adjoining fillers,resulting in some micro-and nanovoids within the heat transfer pathways and severely limiting further thermal conductivity enhancement for BNNS-based composites.Herein,soft and deformable liquid metal(eutectic gallium-indium,EGaIn)nanoparticles were employed to fill the gaps between the adjacent BNNS with a rational design of mass ratios of BNNS and EGaIn,leading to a strongly synergistic effect with BNNS on thermal conductivity improvement.As a result,the composite film(BNNS:63 wt%and EGaIn:7 wt%)employing cellulose nanofibers(CNF:30 wt%)as the polymer matrix achieves superhigh thermal conductivity along the in-plane direction of up to(90.51±6.71)W·m^(-1)·K^(-1),showing the highest value among the BNNSbased composites with a bi-filler system as far as we know.Additionally,the film can work as a heat spreader for the heat dissipation of high-power light emitting diodes,outperforming tin foil in cooling efficiency.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52075527,5227020331 and 52102055)the National Key R&D Program of China (Nos.2017YFB0406000 and 2017YFE0128600)+12 种基金the Project of the Chinese Academy of Sciences (Nos.XDC07030100,XDA22020602,ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (No.2020301)the Science and Technology Major Project of Ningbo (Nos.2021Z115,2021Z120,2018B10046 and 2016S1002)the Key Research and Development Program of Ningbo City (No.2022Z084)the Natural Science Foundation of Ningbo (No.2017A610010)the Foundation of State Key Laboratory of Solid lubrication (No.LSL-1912)China Postdoctoral Science Foundation (Nos.2020M681965 and2022M713243)the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (No.6142905192806)K.C.Wong Education Foundation (No.GJTD-2019-13)the Youth Fund of Chinese Academy of Sciences (No.JCPYJJ-22030)the Science and Technology Project of Zhejiang Province (No.2022C01182)Zhejiang Provincial Natural Science Foundation of China (No.LY19B010003)the 3315 Program of Ningbo。
文摘With the fast development of integrated circuit devices as well as batteries with high energy densities,the thermal management of electronic components is becoming increasingly crucial to maintaining their reliable operations.Boron nitride nanosheets(BNNS),which have superhigh thermal conductivity along the in-plane direction while remaining electrically insulating,were widely regarded as an ideal filler for preparing high-performance polymer composites to address the‘‘thermal failure''issue.However,due to the instinctive rigidity of BNNS,the nanosheets are unable to form a tightly interfacial contact between the adjoining fillers,resulting in some micro-and nanovoids within the heat transfer pathways and severely limiting further thermal conductivity enhancement for BNNS-based composites.Herein,soft and deformable liquid metal(eutectic gallium-indium,EGaIn)nanoparticles were employed to fill the gaps between the adjacent BNNS with a rational design of mass ratios of BNNS and EGaIn,leading to a strongly synergistic effect with BNNS on thermal conductivity improvement.As a result,the composite film(BNNS:63 wt%and EGaIn:7 wt%)employing cellulose nanofibers(CNF:30 wt%)as the polymer matrix achieves superhigh thermal conductivity along the in-plane direction of up to(90.51±6.71)W·m^(-1)·K^(-1),showing the highest value among the BNNSbased composites with a bi-filler system as far as we know.Additionally,the film can work as a heat spreader for the heat dissipation of high-power light emitting diodes,outperforming tin foil in cooling efficiency.