The reductant is a critical factor in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries(LIBs).There is limited information regarding the use of SnCl_(2) as a reductant with organic a...The reductant is a critical factor in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries(LIBs).There is limited information regarding the use of SnCl_(2) as a reductant with organic acid(maleic acid)for recovering valuable metals from spent Li-CoO_(2) material.In this study,the leaching efficiencies of Li and Co with 1 mol·L^(−1) of maleic acid and 0.3 mol·L^(−1) of SnCl_(2) were found to be 98.67%and 97.5%,respectively,at 60°C and a reaction time of 40 min.We investigated the kinetics and thermodynamics of the leaching process in this study to better understand the mechanism of the leaching process.Based on a comparison with H_(2)O_(2) with respect to leaching efficiency,the optimal leaching parameters,and the activation energy,we determined that it is feasible to replace H_(2)O_(2) with SnCl_(2) as a leaching reductant in the leaching process.In addition,when SnCl_(2) is used in the acid-leaching process,Sn residue in the leachate may have a positive effect on the re-synthesis of nickel-rich cathode materials.Therefore,the results of this study provide a potential direction for the selection of reductants in the hydrometallurgical recovery of valuable metals from spent LIBs.展开更多
As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl...As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2016YFB0100301)the National Natural Science Foundation of China(Nos.21875022 and U1664255).
文摘The reductant is a critical factor in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries(LIBs).There is limited information regarding the use of SnCl_(2) as a reductant with organic acid(maleic acid)for recovering valuable metals from spent Li-CoO_(2) material.In this study,the leaching efficiencies of Li and Co with 1 mol·L^(−1) of maleic acid and 0.3 mol·L^(−1) of SnCl_(2) were found to be 98.67%and 97.5%,respectively,at 60°C and a reaction time of 40 min.We investigated the kinetics and thermodynamics of the leaching process in this study to better understand the mechanism of the leaching process.Based on a comparison with H_(2)O_(2) with respect to leaching efficiency,the optimal leaching parameters,and the activation energy,we determined that it is feasible to replace H_(2)O_(2) with SnCl_(2) as a leaching reductant in the leaching process.In addition,when SnCl_(2) is used in the acid-leaching process,Sn residue in the leachate may have a positive effect on the re-synthesis of nickel-rich cathode materials.Therefore,the results of this study provide a potential direction for the selection of reductants in the hydrometallurgical recovery of valuable metals from spent LIBs.
基金the support of National Natural Science Foundation of China(21878019)Beijing Natural Science Foundation(2182063)。
文摘As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.