The chromosomal position effect can significantly affect the transgene expression,which may provide an efficient strategy for the inauguration of alien genes in new hosts,but has been less explored rationally.The bact...The chromosomal position effect can significantly affect the transgene expression,which may provide an efficient strategy for the inauguration of alien genes in new hosts,but has been less explored rationally.The bacterium Myxococcus xanthus harbors a large circular high-GC genome,and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products.In this study,we conducted transposon insertion at TA sites on the M.xanthus genome,and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites.The enrichment sites are characteristically distributed along the genome,and the dilution sites are overlapped well with the horizontal transfer genes.We experimentally demonstrated the enrichment sites as high expression integration sites(HEISs),and the dilution sites unsuitable for gene integration expression.This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.展开更多
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis.The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for the...Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis.The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their ma-nipulation.After more than half a century of research,a series of genetic techniques for myxobacteria have been developed,rendering these mysterious bacteria manipulable.Here,we review the advances in genetic manipu-lation of myxobacteria,with a particular focus on the exploitation of secondary metabolism.We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploita-tion of untapped secondary metabolism.展开更多
基金the National Key Research and Development Program of China(2021YFC2101000)the National Natural Science Foundation of China(32301220).
文摘The chromosomal position effect can significantly affect the transgene expression,which may provide an efficient strategy for the inauguration of alien genes in new hosts,but has been less explored rationally.The bacterium Myxococcus xanthus harbors a large circular high-GC genome,and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products.In this study,we conducted transposon insertion at TA sites on the M.xanthus genome,and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites.The enrichment sites are characteristically distributed along the genome,and the dilution sites are overlapped well with the horizontal transfer genes.We experimentally demonstrated the enrichment sites as high expression integration sites(HEISs),and the dilution sites unsuitable for gene integration expression.This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.
基金This work was financially supported by the National Key Re-search and Development Programs of China(2018YFA0900400,2018YFA0901704 and 2021YFC2101000)the Natural Science Foundation of Shandong Province(ZR2019BC041).
文摘Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis.The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their ma-nipulation.After more than half a century of research,a series of genetic techniques for myxobacteria have been developed,rendering these mysterious bacteria manipulable.Here,we review the advances in genetic manipu-lation of myxobacteria,with a particular focus on the exploitation of secondary metabolism.We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploita-tion of untapped secondary metabolism.