Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation freque...Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation frequency) in the desert plant Hedysarum scoparium (Fabaceae), which is an important xerophyte in the arid and semi-arid regions of Northwest China and can grow well as a pioneer plant in shifting sand dunes. We observed insect visitation to H. scoparium over two flowering seasons and estimated pollen limitation using fruit set and seed production. Our results indicate that fruit set and seed production increased significantly with pollen supplementation compared with open pollination. Hedysarum scoparium was pollinated by over 8 species of bees, with 88.4% of visits made by introduced honeybees (Apis mellifera). Bee visitation varied significantly among the patches of habitats, but not associated with patch size of habitat. In general, pollen limitation occurred more strongly during fruit set than during seed production. The patches that received higher rates of pollinator visits were less pollen limited for fruit set. Pollen limitation for seed production, however, was not associated with pollinator visitation frequency. We conclude that pollen limitation in H. scoparium was caused by more than one reason, not just pollinator visits.展开更多
基金funded by the National Basic Research Program of China (2009CB421303)
文摘Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation frequency) in the desert plant Hedysarum scoparium (Fabaceae), which is an important xerophyte in the arid and semi-arid regions of Northwest China and can grow well as a pioneer plant in shifting sand dunes. We observed insect visitation to H. scoparium over two flowering seasons and estimated pollen limitation using fruit set and seed production. Our results indicate that fruit set and seed production increased significantly with pollen supplementation compared with open pollination. Hedysarum scoparium was pollinated by over 8 species of bees, with 88.4% of visits made by introduced honeybees (Apis mellifera). Bee visitation varied significantly among the patches of habitats, but not associated with patch size of habitat. In general, pollen limitation occurred more strongly during fruit set than during seed production. The patches that received higher rates of pollinator visits were less pollen limited for fruit set. Pollen limitation for seed production, however, was not associated with pollinator visitation frequency. We conclude that pollen limitation in H. scoparium was caused by more than one reason, not just pollinator visits.