期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer 被引量:5
1
作者 Yaling Wang Wei Zhu +4 位作者 yuan Deng Pengcheng Zhu yuedong yu Shaoxiong Hu Ruifeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期1-7,共7页
Electronic skins are artificial skin-type multifunctional sensors,which hold great potentials in intelligent robotics,limb prostheses and human health monitoring.However,it is a great challenge to independently and ac... Electronic skins are artificial skin-type multifunctional sensors,which hold great potentials in intelligent robotics,limb prostheses and human health monitoring.However,it is a great challenge to independently and accurately read various physical signals without power supplies.Here,a self-powered flexible temperature-pressure bimodal sensor based on high-performance thermoelectric films and porous microconed conductive elastic materials is presented.Through introducing flexible heat-sink design and harvesting body heat energy,the thin-film thermoelectric device could not only precisely sense temperature signal but also drive the pressure sensor for detecting external tactile stimulus.The integration of Bi-Te based thermoelectric film with high stability in wide temperature range enables the sensor to sense the ambient temperature with high resolution(<0.1 K)as well as excellent sensitivity(3.77 mV K^(-1)).Meanwhile,the porous microconed elastomer responds to pressure variation with low-pressure detection(16 Pa)and a high sensitivity of 37 kPa^(-1).Furthermore,the bimodal sensor could accurately and simultaneously monitor human wrist pulse and body temperature in real time,which demonstrates promising applications in self-powered electronic skins for human health monitoring systems. 展开更多
关键词 Bimodal sensor Body heat energy Porous microconed architecture Bi-Te based thermoelectric film Self-powered E-skins
原文传递
Recent development and application of thin-film thermoelectric cooler 被引量:5
2
作者 yuedong yu Wei Zhu +3 位作者 Xixia Kong Yaling Wang Pengcheng Zhu yuan Deng 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第4期492-503,共12页
Recently,the performance and fabrication of thin-ilm thermoeletric materials have been jargely enhanced.Based on this enhancement,the thin-film thermoelectric cooler(TEC)is becoming a research hot topic,due to its hig... Recently,the performance and fabrication of thin-ilm thermoeletric materials have been jargely enhanced.Based on this enhancement,the thin-film thermoelectric cooler(TEC)is becoming a research hot topic,due to its high cooling flux and microchip level size.To fulfill a thin-film TEC,interfacial problems are unavoidable,as they may largely reduce the properties of a thin-film TEC.Moreover,the architecture of a thin-film TEC should also be properly designed.In this review,we introduced the enhancement of thermoelectric properties of(Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition,physical vapor deposition and electro-deposition.Then,the interfacial problems,including contact resistance,interfacial diffusion and thermal contact resistance,were discussed.Furthermore,the design,fabrication,as well as the performance of thin-film TECs were summarized. 展开更多
关键词 thin-film thermoelectric cooler INTERFACES cooling flux TE device fabrication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部