Electronic skins are artificial skin-type multifunctional sensors,which hold great potentials in intelligent robotics,limb prostheses and human health monitoring.However,it is a great challenge to independently and ac...Electronic skins are artificial skin-type multifunctional sensors,which hold great potentials in intelligent robotics,limb prostheses and human health monitoring.However,it is a great challenge to independently and accurately read various physical signals without power supplies.Here,a self-powered flexible temperature-pressure bimodal sensor based on high-performance thermoelectric films and porous microconed conductive elastic materials is presented.Through introducing flexible heat-sink design and harvesting body heat energy,the thin-film thermoelectric device could not only precisely sense temperature signal but also drive the pressure sensor for detecting external tactile stimulus.The integration of Bi-Te based thermoelectric film with high stability in wide temperature range enables the sensor to sense the ambient temperature with high resolution(<0.1 K)as well as excellent sensitivity(3.77 mV K^(-1)).Meanwhile,the porous microconed elastomer responds to pressure variation with low-pressure detection(16 Pa)and a high sensitivity of 37 kPa^(-1).Furthermore,the bimodal sensor could accurately and simultaneously monitor human wrist pulse and body temperature in real time,which demonstrates promising applications in self-powered electronic skins for human health monitoring systems.展开更多
Recently,the performance and fabrication of thin-ilm thermoeletric materials have been jargely enhanced.Based on this enhancement,the thin-film thermoelectric cooler(TEC)is becoming a research hot topic,due to its hig...Recently,the performance and fabrication of thin-ilm thermoeletric materials have been jargely enhanced.Based on this enhancement,the thin-film thermoelectric cooler(TEC)is becoming a research hot topic,due to its high cooling flux and microchip level size.To fulfill a thin-film TEC,interfacial problems are unavoidable,as they may largely reduce the properties of a thin-film TEC.Moreover,the architecture of a thin-film TEC should also be properly designed.In this review,we introduced the enhancement of thermoelectric properties of(Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition,physical vapor deposition and electro-deposition.Then,the interfacial problems,including contact resistance,interfacial diffusion and thermal contact resistance,were discussed.Furthermore,the design,fabrication,as well as the performance of thin-film TECs were summarized.展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFA0702100)the Zhejiang Provincial Key R&D Program of China(Grant No.2021C05002)+1 种基金the Beijing Nova Programme Interdisciplinary Cooperation Project(Grant Nos.Z191100001119019 and Z191100001119013)the Fundamental Research Funds for the Central Universities。
文摘Electronic skins are artificial skin-type multifunctional sensors,which hold great potentials in intelligent robotics,limb prostheses and human health monitoring.However,it is a great challenge to independently and accurately read various physical signals without power supplies.Here,a self-powered flexible temperature-pressure bimodal sensor based on high-performance thermoelectric films and porous microconed conductive elastic materials is presented.Through introducing flexible heat-sink design and harvesting body heat energy,the thin-film thermoelectric device could not only precisely sense temperature signal but also drive the pressure sensor for detecting external tactile stimulus.The integration of Bi-Te based thermoelectric film with high stability in wide temperature range enables the sensor to sense the ambient temperature with high resolution(<0.1 K)as well as excellent sensitivity(3.77 mV K^(-1)).Meanwhile,the porous microconed elastomer responds to pressure variation with low-pressure detection(16 Pa)and a high sensitivity of 37 kPa^(-1).Furthermore,the bimodal sensor could accurately and simultaneously monitor human wrist pulse and body temperature in real time,which demonstrates promising applications in self-powered electronic skins for human health monitoring systems.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.61534001)the Joint Funds of the National Natural Science Foundation of China(Grant No.U1601213)+2 种基金the National Natural Science Foundation of China(Grant Nos.51601005 and 61704006)the Beijing Natural Science Foundation(Grant No.2182032)the Fundamental Research Funds for the Central Universities.
文摘Recently,the performance and fabrication of thin-ilm thermoeletric materials have been jargely enhanced.Based on this enhancement,the thin-film thermoelectric cooler(TEC)is becoming a research hot topic,due to its high cooling flux and microchip level size.To fulfill a thin-film TEC,interfacial problems are unavoidable,as they may largely reduce the properties of a thin-film TEC.Moreover,the architecture of a thin-film TEC should also be properly designed.In this review,we introduced the enhancement of thermoelectric properties of(Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition,physical vapor deposition and electro-deposition.Then,the interfacial problems,including contact resistance,interfacial diffusion and thermal contact resistance,were discussed.Furthermore,the design,fabrication,as well as the performance of thin-film TECs were summarized.