Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with in...Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with increasing depth. Fluid flow behavior of rock fractures is a critical issue in many subsurface rock engineering projects. Previous studies have extensively considered permeability evolution in rock fractures under loading phase, whereas changes in fracture permeability under unloading phase have not been fully understood. To examine the unloading-induced changes in fracture permeability under different temperatures, we performed water flow-through tests on fractured rock samples subjected to decreasing confining pressures and different temperatures. The experimental results show that the permeability of fracture increases with unloading of confining pressure but decreases with loading-unloading cycles. Temperature may affect fracture permeability when it is higher than a certain threshold. An empirical model of fracture hydraulic aperture including two material parameters of initial normal stiffness and maximum normal closure can well describe the permeability changes in rough rock fracture subjected to loading-unloading cycles and heating. A coupled thermo-mechanical model considering asperity damage is finally used to understand the influences of stress paths and temperatures on fracture permeability.展开更多
Post shut‐in seismic events in enhanced geothermal systems(EGSs)occur predominantly at the outer rim of the co‐injection seismic cloud.The concept of postinjection fracture and fault closure near the injection well ...Post shut‐in seismic events in enhanced geothermal systems(EGSs)occur predominantly at the outer rim of the co‐injection seismic cloud.The concept of postinjection fracture and fault closure near the injection well has been proposed and validated as a mechanism for enhancing post shut‐in pressure diffusion that promotes seismic hazard.This phenomenon is primarily attributed to the poro‐elastic closure of fractures resulting from the reduction of wellbore pressure after injection termination.However,the thermal effects in EGSs,mainly including heat transfer and thermal stress,may not be trivial and their role in postinjection fault closure and pressure evolution needs to be explored.In this study,we performed numerical simulations to analyze the relative importance of poro‐elasticity,heat transfer,and thermo‐elasticity in promoting postinjection fault closure and pressure diffusion.The numerical model wasfirst validated against analytical solutions in terms offluid pressure diffusion and against heatedflow‐through experiments in terms of thermal processes.We then quantified and distinguished the contribution of each individual mechanism by comparing four different shut‐in scenarios simulated under different coupled conditions.Our results highlight the importance of poro‐elastic fault closure in promoting postinjection pressure buildup and seismicity,and suggest that heat transfer can further augment the fault closure‐induced pressure increase and thus potentially intensify the postinjection seismic hazard,with minimal contribution from thermo‐elasticity.展开更多
Numerous intersected rock fractures constitute the fracture network in enhanced geothermal systems.The complicated convective heat transfer behavior in intersected fractures is critical to the heat recovery in fractur...Numerous intersected rock fractures constitute the fracture network in enhanced geothermal systems.The complicated convective heat transfer behavior in intersected fractures is critical to the heat recovery in fractured geothermal reservoirs.A series of three-dimensional intersected fracture models is constructed to perform the flow-through heat transfer simulations.The geometry effects of dead-end fractures(DEFs)on the heat transfer are evaluated in terms of intersected angles,apertures,lengths,and the connectivity.The results indicate that annular streamlines appear in the rough DEF and cause an ellipse distribution of the cold front.Compared to plate DEFs,the fluid flow in the rough DEF enhances the heat transfer.Both the increment of outlet water temperatureΔToutand the ratio of heat production Qrpresent the largest at the intersected angle of 90°while decline with the decrease of the intersected angle between the main flow fracture(MFF)and the DEFs.The extension of the length of intersected DEFs is beneficial to heat production while enhancing its aperture is not needed.Solely increasing the number of intersected DEFs induces a little increase of heat extraction,and more significant heat production can be obtained through connecting these DEFs with the MFF forming the flow network.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.U2067203 and 42277140)Tsinghua University Initiative Scientific Research Program(Grant No.2022Z11QYJ006).
文摘Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with increasing depth. Fluid flow behavior of rock fractures is a critical issue in many subsurface rock engineering projects. Previous studies have extensively considered permeability evolution in rock fractures under loading phase, whereas changes in fracture permeability under unloading phase have not been fully understood. To examine the unloading-induced changes in fracture permeability under different temperatures, we performed water flow-through tests on fractured rock samples subjected to decreasing confining pressures and different temperatures. The experimental results show that the permeability of fracture increases with unloading of confining pressure but decreases with loading-unloading cycles. Temperature may affect fracture permeability when it is higher than a certain threshold. An empirical model of fracture hydraulic aperture including two material parameters of initial normal stiffness and maximum normal closure can well describe the permeability changes in rough rock fracture subjected to loading-unloading cycles and heating. A coupled thermo-mechanical model considering asperity damage is finally used to understand the influences of stress paths and temperatures on fracture permeability.
文摘Post shut‐in seismic events in enhanced geothermal systems(EGSs)occur predominantly at the outer rim of the co‐injection seismic cloud.The concept of postinjection fracture and fault closure near the injection well has been proposed and validated as a mechanism for enhancing post shut‐in pressure diffusion that promotes seismic hazard.This phenomenon is primarily attributed to the poro‐elastic closure of fractures resulting from the reduction of wellbore pressure after injection termination.However,the thermal effects in EGSs,mainly including heat transfer and thermal stress,may not be trivial and their role in postinjection fault closure and pressure evolution needs to be explored.In this study,we performed numerical simulations to analyze the relative importance of poro‐elasticity,heat transfer,and thermo‐elasticity in promoting postinjection fault closure and pressure diffusion.The numerical model wasfirst validated against analytical solutions in terms offluid pressure diffusion and against heatedflow‐through experiments in terms of thermal processes.We then quantified and distinguished the contribution of each individual mechanism by comparing four different shut‐in scenarios simulated under different coupled conditions.Our results highlight the importance of poro‐elastic fault closure in promoting postinjection pressure buildup and seismicity,and suggest that heat transfer can further augment the fault closure‐induced pressure increase and thus potentially intensify the postinjection seismic hazard,with minimal contribution from thermo‐elasticity.
基金financially supported by the National Key R&D Program of China(Grant No.2019YFB1504103)the China Postdoctoral Science Foundation(Grant Nos.2019TQ0174)。
文摘Numerous intersected rock fractures constitute the fracture network in enhanced geothermal systems.The complicated convective heat transfer behavior in intersected fractures is critical to the heat recovery in fractured geothermal reservoirs.A series of three-dimensional intersected fracture models is constructed to perform the flow-through heat transfer simulations.The geometry effects of dead-end fractures(DEFs)on the heat transfer are evaluated in terms of intersected angles,apertures,lengths,and the connectivity.The results indicate that annular streamlines appear in the rough DEF and cause an ellipse distribution of the cold front.Compared to plate DEFs,the fluid flow in the rough DEF enhances the heat transfer.Both the increment of outlet water temperatureΔToutand the ratio of heat production Qrpresent the largest at the intersected angle of 90°while decline with the decrease of the intersected angle between the main flow fracture(MFF)and the DEFs.The extension of the length of intersected DEFs is beneficial to heat production while enhancing its aperture is not needed.Solely increasing the number of intersected DEFs induces a little increase of heat extraction,and more significant heat production can be obtained through connecting these DEFs with the MFF forming the flow network.