期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions
1
作者 Lanbo Li yuegui zhou +2 位作者 Chaoqiang Yang Anwen Peng Guanshuo Huang 《Carbon Resources Conversion》 EI 2024年第3期84-96,共13页
The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and t... The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2). 展开更多
关键词 Pulverized coal combustion MILD oxy-fuel combustion NO formation and reduction Chemical kinetics Relative contribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部