期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Realizing Complete Solid-Solution Reaction to Achieve Temperature Independent LiFePO_(4) for High Rate and Low Temperature Li-Ion Batteries 被引量:1
1
作者 Bingqiu Liu Qi Zhang +6 位作者 Yiqian Li yuehan hao Usman Ali Lu Li Lingyu Zhang Chungang Wang Zhongmin Su 《CCS Chemistry》 CAS CSCD 2023年第1期209-220,共12页
The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution re... The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications. 展开更多
关键词 complete solid-solution reaction ultrafine nanostructure high rate low temperature lithium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部