期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
1
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng yueping fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Photocatalytic reduction of carbon dioxide to methanol by Cu_2O/SiC nanocrystallite under visible light irradiation 被引量:8
2
作者 Huiling Li Yonggen Lei +4 位作者 Ying Huang yueping fang Yuehua Xu Li Zhu Xin Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期145-150,共6页
The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results in... The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively. 展开更多
关键词 photocatalytic reduction carbon dioxide heterogeneous catalysts SIC CU2O NANOPARTICLES
下载PDF
FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer 被引量:6
3
作者 Sibo Chen Yun Hau Ng +6 位作者 Jihai Liao Qiongzhi Gao Siyuan Yang Feng Peng Xinhua Zhong yueping fang Shengsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期92-101,I0004,共11页
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p... Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications. 展开更多
关键词 FeCo alloy nanoparticles COCATALYST N-doped graphitized carbon g-C3N4 Visible light Hydrogen evolution
下载PDF
Hierarchically porous, ultrathin N–doped carbon nanosheets embedded with highly dispersed cobalt nanoparticles as efficient sulfur host for stable lithium–sulfur batteries 被引量:3
4
作者 Mengrui Wang Xunfu Zhou +3 位作者 Xin Cai Hongqiang Wang yueping fang Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期106-114,共9页
The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of hig... The sluggish redox kinetics and shuttle effect of soluble polysulfides intermediate primarily restrict the electrochemical performance of lithium–sulfur(Li–S) batteries. To address this issue, rational design of high–efficiency sulfur host is increasingly demanded to accelerate the polysulfides conversion during charge/discharge process. Herein, we propose a macro–mesoporous sulfur host(Co@NC), which comprises highly dispersed cobalt nanoparticles embedding in N–doped ultrathin carbon nanosheets. Co@NC is simply synthesized via a carbon nitride–derived pyrolysis approach. Owing to the highly conductive graphene–like matrix and well defined porous structure, the designed multifunctional Co@NC host enables rapid electron/ion transport, electrolyte penetration and effective sulfur trapping. More significantly,N heteroatoms and homogeneous Co nanocatalysts in the graphitic carbon nanosheets could serve as chemisorption sites as well as electrocatalytic centers for sulfur species. These Co–N active sites can synergistically facilitate the redox conversion kinetics and mitigate the shuttling of polysulfides, thus leading to improved electrochemical cycling performance of Li–S batteries. As a consequence, the S/Co@NC cathode demonstrates high initial specific capacity(1505 mA h g-1 at 0.1 C) and excellent cycling stability at 1 C over 300 cycles, giving rise to a capacity retention of 91.7% and an average capacity decline of 0.03%cycle-1. 展开更多
关键词 Rechargeable lithium–sulfur batteries Sulfur host Shuttling effect Carbon nanosheets Cobalt nanoparticles Carbon nitride
下载PDF
Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution 被引量:2
5
作者 Xunfu Zhou Qiongzhi Gao +1 位作者 Siyuan Yang yueping fang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期62-71,共10页
Considerable research efforts have been devoted to developing novel photocatalysts with increased performances by hybridizing inorganic nanomaterials with carbon nanotubes.In this work,one-dimensional coaxial core-she... Considerable research efforts have been devoted to developing novel photocatalysts with increased performances by hybridizing inorganic nanomaterials with carbon nanotubes.In this work,one-dimensional coaxial core-shell carbon nanotubes@SiC nanotubes were successfully synthesized via in situ growth of SiC coatings on carbon nanotubes by a vapor-solid reaction between silicon vapor and carbon nanotubes.High-resolution transmission electron microscope images show that SiC and carbon nanotubes link to form a robust heterojunction with intrinsic atomic contact,which results in efficient separation of the photogenerated electron-hole pairs on SiC and electron transfer from SiC to carbon nanotubes.Compared with those of similar materials such as pure SiC nanocrystals and SiC nanotubes,the metal-free carbon nanotubes@SiC exhibits an enhanced photocatalytic activity for hydrogen evolution,which is attributed to the enhanced light absorption and the efficient interfacial charge transfer/separation brought about by their one-dimensional coaxial nanoheterostructures.Moreover,the photocatalytic stability of the metal-free carbon nanotubes@SiC was tested for over 20 h without any obvious decay. 展开更多
关键词 Silicon carbide Coaxial core-shell nanotubes Nanoheterostructures Charge separation Hydrogen evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部