期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
1-Naphthol induced PtsAg nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells 被引量:4
1
作者 Xian Jiang Yang Liu +8 位作者 Jiaxin Wang Yufei Wang yuexin xiong Qun Liu Naixu Li Jiancheng Zhou Gengtao Fu Dongmei Sun Yawen Tang 《Nano Research》 SCIE EI CAS CSCD 2019年第2期323-329,共7页
Developing highly efficient bifunctional cathode and anode electrocatalysts is very important for the large-scale application of direct formic acid fuel cells. However, the high-cost and poor CO-tolera nee ability of ... Developing highly efficient bifunctional cathode and anode electrocatalysts is very important for the large-scale application of direct formic acid fuel cells. However, the high-cost and poor CO-tolera nee ability of the most commonly used Pt greatly block this process. To in crease the utilizatio n efficie ncy and exte nd bifunctional properties of precious Pt, herei n, coral-like Pt3Ag nano crystals are developed as an excelle nt bifunctional electrocatalyst through a facile one-pot solvothermal method. The formation mechanism of Ptgg nanocorals has been elaborated well via a series of control experiments. It is proved that 1-naphthol serving as a guiding surfactant plays a key role in the formation of high-quality nano corals. Thanks to the unique coral-like structure and alloy effects, the developed Ptgg nano corals present sign ificantly enhanced electrocatalytic properties (including activity, stability and CO-toleranee ability) towards both the cathodic oxygen reduction and anodic formic acid oxidati on, as compared with those of commercial Pt black and Pt-based nan oparticles. The prese nt synthetic method can also be extended to fabricate other bimetallic electrocatalysts with unique morphology and structure. 展开更多
关键词 Pt3Ag alloy nanocorals BIFUNCTIONAL ELECTROCATALYST OXYGEN reduction reaction formic acid OXIDATION
原文传递
Trimetallic Au@PdPb nanowires for oxygen reduction reaction 被引量:5
2
作者 Xian Jiang yuexin xiong +3 位作者 Ruopeng Zhao Jiancheng Zhou Jong-Min Lee Yawen Tang 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2691-2696,共6页
The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction(ORR)kinetics in acid media.To improve ORR activity and utilization efficiency of Pd,an i... The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction(ORR)kinetics in acid media.To improve ORR activity and utilization efficiency of Pd,an ideal catalyst should have ORR-favorable chemical environment,optimized geometric structure,and long periods of operation.In this work,we first synthesize a novel trimetallic Au@PdPb core–shell catalyst consisting of PdPb alloy nano-layers grown on the surface of ultrathin Au nanowires(NWs)by a two-step water-bath method.The Au@PdPb NWs have the merits of anisotropic one-dimensional nanostructure,high utilization efficiency of Pd atoms and doping of Pb atoms.Because of the structural and multiple compositional advantages,Au@PdPb NWs exhibit remarkably enhanced ORR activity with a high haIf-wave potential(0.827 V),much better than those of commercial Pd black(0.788 V)and bimetallic Au@Pd NWs(0.803 V).Moreover,Au@PdPb NWs display better electrocatalytic stability for the ORR than those of Pd black and Au@Pd NWs.This study demonstrates the validity of our approach for deriving highly ORR-active Pd-based catalysts by modifying their structure and composition. 展开更多
关键词 trimetallic Au@PdPb nanowires core–shell structure optimized electronic structure ELECTROCATALYST oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部