Free-spectral-range(FSR)-free optical filters have always been a critical challenge for photonic integrated circuits.A high-performance FSR-free filter is highly desired for communication,spectroscopy,and sensing appl...Free-spectral-range(FSR)-free optical filters have always been a critical challenge for photonic integrated circuits.A high-performance FSR-free filter is highly desired for communication,spectroscopy,and sensing applications.Despite significant progress in integrated optical filters,the FSR-free filter with a tunable narrow-band,high out-of-band rejection,and large fabrication tolerance has rarely been demonstrated.In this paper,we propose an exact and robust design method for add-drop filters(ADFs)with an FSR-free operation capability,a sub-nanometer optical bandwidth,and a high out-of-band rejection(OBR)ratio.The achieved filter has a 3-dB bandwidth of<0.5 nm and an OBR ratio of 21.5 dB within a large waveband of 220 nm,which to the best of our knowledge,is the largest-FSR ADF demonstrated on a silicon photonic platform.The filter exhibits large tunability of 12.3 nm with a heating efficiency of 97 pm/mW and maintains the FSR-free feature in the whole tuning process.In addition,we fabri-cated a series of ADFs with different periods,which all showed reliable and excellent performances.展开更多
基金National Key Research and Development Program of China(2019YFB2203003)National Natural Science Foundation of China(62175202 and 91950204)+2 种基金Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2020R01005)the Open Research program of Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceWestlake University(the start-up fund of Westlake University).
文摘Free-spectral-range(FSR)-free optical filters have always been a critical challenge for photonic integrated circuits.A high-performance FSR-free filter is highly desired for communication,spectroscopy,and sensing applications.Despite significant progress in integrated optical filters,the FSR-free filter with a tunable narrow-band,high out-of-band rejection,and large fabrication tolerance has rarely been demonstrated.In this paper,we propose an exact and robust design method for add-drop filters(ADFs)with an FSR-free operation capability,a sub-nanometer optical bandwidth,and a high out-of-band rejection(OBR)ratio.The achieved filter has a 3-dB bandwidth of<0.5 nm and an OBR ratio of 21.5 dB within a large waveband of 220 nm,which to the best of our knowledge,is the largest-FSR ADF demonstrated on a silicon photonic platform.The filter exhibits large tunability of 12.3 nm with a heating efficiency of 97 pm/mW and maintains the FSR-free feature in the whole tuning process.In addition,we fabri-cated a series of ADFs with different periods,which all showed reliable and excellent performances.