This paper reported a wine-derived lactic acid bacterium,Lactiplantibacillus plantarum XJ25,which exhibited higher cell viability under acid stress upon methionine supplementation.Cellular morphology and the compositi...This paper reported a wine-derived lactic acid bacterium,Lactiplantibacillus plantarum XJ25,which exhibited higher cell viability under acid stress upon methionine supplementation.Cellular morphology and the composition of the cytomembrane phospholipids revealed a more solid membrane architecture presented in the acid-stressed cells treated with methionine supplementation.Transcriptional analysis showed L.plantarum XJ25 reduced methionine transport and homocysteine biosynthesis under acid stress.Subsequent overexpression assays proved that methio-nine supplementation could alleviate the cell toxicity from homocysteine accumulation under acid stress.Finally,L.plantarum XJ25 employed energy allocation strategy to response environmental changes by balancing the uptake methionine and adjusting saturated fatty acids(SFAs)in membrane.These data support a novel mechanism of acid resistance involving methionine utilization and cellular energy distribution in LAB and provide crucial theoretical clues for the mechanisms of acid resistance in other bacteria.展开更多
基金the National Natural Science Foundation of China(42030508)the Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02)the Long-Term Ecological Observation Study of Alpine Pine in Southeast Tibet(Science and Technology Innovation Base)(XZ202301JD0001G).
基金supported by the National Natural Science Foundation of China(32072206)the National Key R&D Program of China(2019YFD1002503)the China Technology Agriculture Research System(CARS-29-jg-3).
文摘This paper reported a wine-derived lactic acid bacterium,Lactiplantibacillus plantarum XJ25,which exhibited higher cell viability under acid stress upon methionine supplementation.Cellular morphology and the composition of the cytomembrane phospholipids revealed a more solid membrane architecture presented in the acid-stressed cells treated with methionine supplementation.Transcriptional analysis showed L.plantarum XJ25 reduced methionine transport and homocysteine biosynthesis under acid stress.Subsequent overexpression assays proved that methio-nine supplementation could alleviate the cell toxicity from homocysteine accumulation under acid stress.Finally,L.plantarum XJ25 employed energy allocation strategy to response environmental changes by balancing the uptake methionine and adjusting saturated fatty acids(SFAs)in membrane.These data support a novel mechanism of acid resistance involving methionine utilization and cellular energy distribution in LAB and provide crucial theoretical clues for the mechanisms of acid resistance in other bacteria.