Roseiflexus castenholzii is a gram-negativefilamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain(ETC).The ETC is composed of a reaction center(RC)–lig...Roseiflexus castenholzii is a gram-negativefilamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain(ETC).The ETC is composed of a reaction center(RC)–light-harvesting(LH)complex(rcRC–LH);an alternative complex III(rcACIII),which functionally re-places the cytochrome bc1/b6f complex;and the periplasmic electron acceptor auracyanin(rcAc).Although compositionally and structurally different from the bc1/b6f complex,rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc.However,rcACIII-mediated electron transfer(which includes both an intraprotein route and a downstream route)has not been clearly elucidated,nor have the details of cyclic ETC.Here,we identify a previously unknown monoheme cytochrome c(cyt c551)as a novel periplasmic electron acceptor of rcACIII.It reduces the light-excited rcRC–LH to complete a cyclic ETC.We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance(EPR),spectroelectrochemistry,and enzymatic and structural analyses.Wefind that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors(rcAc and cyt c551),which eventually reduce the rcRC to form the complete cyclic ETC.This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our under-standing of the diversity and molecular evolution of prokaryotic ETCs.展开更多
基金supported by grants from the National Natural Science Foundation of China (32171227,31870740,and 31570738 to X.X.,21825703 and 21927814 to C.T.)the National Key Research and Development Project of China (2019YFA0405600 and 2019YFA0706900 to C.T.)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB37040000)to C.T.,the Youth Innovation Promotion Association CAS (2022455)to L.Y.,the Zhejiang Provincial Natural Science Foundation of China under grant LR22C020002 to X.X.
文摘Roseiflexus castenholzii is a gram-negativefilamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain(ETC).The ETC is composed of a reaction center(RC)–light-harvesting(LH)complex(rcRC–LH);an alternative complex III(rcACIII),which functionally re-places the cytochrome bc1/b6f complex;and the periplasmic electron acceptor auracyanin(rcAc).Although compositionally and structurally different from the bc1/b6f complex,rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc.However,rcACIII-mediated electron transfer(which includes both an intraprotein route and a downstream route)has not been clearly elucidated,nor have the details of cyclic ETC.Here,we identify a previously unknown monoheme cytochrome c(cyt c551)as a novel periplasmic electron acceptor of rcACIII.It reduces the light-excited rcRC–LH to complete a cyclic ETC.We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance(EPR),spectroelectrochemistry,and enzymatic and structural analyses.Wefind that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors(rcAc and cyt c551),which eventually reduce the rcRC to form the complete cyclic ETC.This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our under-standing of the diversity and molecular evolution of prokaryotic ETCs.