Effective resource allocation can exploit the advantage of intelligent reflective surface(IRS)assisted mobile edge computing(MEC)fully.However,it is challenging to balance the limited energy of MTs and the strict dela...Effective resource allocation can exploit the advantage of intelligent reflective surface(IRS)assisted mobile edge computing(MEC)fully.However,it is challenging to balance the limited energy of MTs and the strict delay requirement of their tasks.In this paper,in order to tackle the challenge,we jointly optimize the offloading delay and energy consumption of mobile terminals(MTs)to realize the delay-energy tradeoff in an IRS-assisted MEC network,in which non-orthogonal multiple access(NOMA)and multiantenna are applied to improve spectral efficiency.To achieve the optimal delay-energy tradeoff,an offloading cost minimization model is proposed,in which the edge computing resource allocation,signal detecting vector,uplink transmission power,and IRS phase shift coefficient are needed to be jointly optimized.The optimization of the model is a multi-level fractional problem in complex fields with some coupled high dimension variables.To solve the intractable problem,we decouple the original problem into a computing subproblem and a wireless transmission subproblem based on the uncoupled relationship between different variable types.The computing subproblem is proved convex and the closed-form solution is obtained for the edge computing resource allocation.Further,the wireless transmission subproblem is solved iteratively through decoupling the residual variables.In each iteration,the closed-form solution of residual variables is obtained through different successive convex approximation(SCA)methods.We verify the proposed algorithm can converge to an optimum with polynomial complexity.Simulation results indicate the proposed method achieves average saved costs of 65.64%,11.24%,and 9.49%over three benchmark methods respectively.展开更多
This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S...This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.展开更多
Link Evaluation (LE) is proposed in system evaluation to reduce complexity. It is important to practical sys-tems also for link adaptation. Current algorithms for link evaluation are developed by simulation method, la...Link Evaluation (LE) is proposed in system evaluation to reduce complexity. It is important to practical sys-tems also for link adaptation. Current algorithms for link evaluation are developed by simulation method, lacking of theoretical description. Although they provide some good accuracy for some scenarios, all of them are not universal. With the help of information theory, a universal principle of link evaluation is proposed in this paper, which explains current algorithms and leads to a universal algorithm to implement link evaluation for common wireless transmissions. This paper proposes an Extended Received Block Information Rate (ERBIR) algorithm for universal link evaluation, which is extended from current RBIR algorithm by the help of the principle presented in this paper. Mainly the universality and accuracy are highlighted. Simulation results verify all the algorithms mentioned in this paper. Both the principle and ERBIR are validated by simulation with various wireless scenarios.展开更多
Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function...Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.展开更多
基金funded by 2020 Industrial Technology Foundation Public Service Platform Project(2020-0105-2-1)Foshan Science and Technology Innovation Special Fund Project(No.BK20AF004).
文摘Effective resource allocation can exploit the advantage of intelligent reflective surface(IRS)assisted mobile edge computing(MEC)fully.However,it is challenging to balance the limited energy of MTs and the strict delay requirement of their tasks.In this paper,in order to tackle the challenge,we jointly optimize the offloading delay and energy consumption of mobile terminals(MTs)to realize the delay-energy tradeoff in an IRS-assisted MEC network,in which non-orthogonal multiple access(NOMA)and multiantenna are applied to improve spectral efficiency.To achieve the optimal delay-energy tradeoff,an offloading cost minimization model is proposed,in which the edge computing resource allocation,signal detecting vector,uplink transmission power,and IRS phase shift coefficient are needed to be jointly optimized.The optimization of the model is a multi-level fractional problem in complex fields with some coupled high dimension variables.To solve the intractable problem,we decouple the original problem into a computing subproblem and a wireless transmission subproblem based on the uncoupled relationship between different variable types.The computing subproblem is proved convex and the closed-form solution is obtained for the edge computing resource allocation.Further,the wireless transmission subproblem is solved iteratively through decoupling the residual variables.In each iteration,the closed-form solution of residual variables is obtained through different successive convex approximation(SCA)methods.We verify the proposed algorithm can converge to an optimum with polynomial complexity.Simulation results indicate the proposed method achieves average saved costs of 65.64%,11.24%,and 9.49%over three benchmark methods respectively.
基金supported by the National Natural Science Foundation of China ( No . 61602034 )the Beijing Natural Science Foundation (No. 4162049)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No. 2014D03)the Fundamental Research Funds for the Central Universities Beijing Jiaotong University (No. 2016JBM015)the NationalHigh Technology Research and Development Program of China (863 Program) (No. 2015AA015702)
文摘This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.
文摘Link Evaluation (LE) is proposed in system evaluation to reduce complexity. It is important to practical sys-tems also for link adaptation. Current algorithms for link evaluation are developed by simulation method, lacking of theoretical description. Although they provide some good accuracy for some scenarios, all of them are not universal. With the help of information theory, a universal principle of link evaluation is proposed in this paper, which explains current algorithms and leads to a universal algorithm to implement link evaluation for common wireless transmissions. This paper proposes an Extended Received Block Information Rate (ERBIR) algorithm for universal link evaluation, which is extended from current RBIR algorithm by the help of the principle presented in this paper. Mainly the universality and accuracy are highlighted. Simulation results verify all the algorithms mentioned in this paper. Both the principle and ERBIR are validated by simulation with various wireless scenarios.
文摘Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.