Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem...Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs.展开更多
Fuel flexibility is one of the most distinguished advantages of solid oxide fuel cells(SOFCs)over other low-temperature fuel cells.Furthermore,the combination of ammonia fuel and SOFCs technology should be a promising...Fuel flexibility is one of the most distinguished advantages of solid oxide fuel cells(SOFCs)over other low-temperature fuel cells.Furthermore,the combination of ammonia fuel and SOFCs technology should be a promising clean energy system after considering the high energy density,easy transportation/storage,matured synthesis technology and carbon-free nature of NH_(3) as well as high efficiency of SOFCs.However,the large-scale applications of direct-ammonia SOFCs(DASOFCs)are strongly limited by the inferior anti-sintering capability and catalytic activity for ammonia decomposition reaction of conventional nickel-based cermet anode.Herein,a slightly ruthenium(Ru)doping in perovskite oxides is proposed to promote the alloy nanoparticle exsolution,enabling better DA-SOFCs with enhanced power outputs and operational stability.After treating Ru-doped Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.75)Ru_(0.05)O_(3-δ) single-phase perovskite in a reducing atmosphere,in addition to the formation of two layered Ruddlesden-Popper perovskites and Pr_(2)O_(3) nanoparticles(the same as the Ru-free counterpart,Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)),the exsolution of CoFeRu-based alloy nanoparticles is remarkably promoted.Such reduced Pr_(0.6)Sr0.4Co_(0.2)Fe_(0.75)Ru_(0.05)O_(3-δ) composite anode shows superior catalytic activity and stability for NH_(3) decomposition reaction as well as anti-sintering capability in DA-SOFCs to those of reduced Pr0.6Sr0.4Co0.2Fe0.8O_(3-δ)due to the facilitated nanoparticle exsolution and stronger nanoparticle/substrate interaction.This work provides a facile and effective strategy to design highly active and durable anodes for DA-SOFCs,promoting large-scale applications of this technology.展开更多
With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stea...With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stealthily without knowing the full configuration(e.g., network topology) of a power system. In this paper, we present a comprehensive review on false data injection attacks which utilize barrier conditions, blind identification techniques and data driven approaches to overcome limitations of incomplete network information. We also point out future research topics for facilitating the detection and prevention of such false data attacks.展开更多
The measurement of crop nutrition is considerably significant in agricultural practices,especially in the application of mechanized variable rate fertilization.Feature extraction and model building are two important l...The measurement of crop nutrition is considerably significant in agricultural practices,especially in the application of mechanized variable rate fertilization.Feature extraction and model building are two important links in crop nutrition measurement by digital image.In this paper,a feature set of fusion multi-colour space in field prototype is extracted and an evaluation approach using stepwise-based ridge regression(SBRR)that uses correlation-based evaluation method is employed.First the image features of three known colour spaces are extracted,meanwhile a new colour space named rgb is constructed according to the characteristics that RGB colour space easily affected by light.Then the SBRR with nested cross validation is used to find the best evaluation model.By performance evaluation,the optimal SBRR model is obtained(R^(2)=0.718 RMSE=5.111).Additionally,compared with two other nutritional evaluation approach named backpropagation artificial neural network(BP-ANN)and k-nearest neighbors(KNN),SBRR achieves better performance in both R^(2) and RMSE.Furthermore the proposed model’s reliability is verified using the image dataset taken from the same wheat field in the next year.The R^(2) and RMSE values are 0.794 and 4.304,respectively.The comparisons and verification show that our proposed SBRR approach can achieve better experimental results and can be considered a reliable and low-cost alternative for estimating the chlorophyll content of wheat leaves in field.展开更多
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金The work was supported by National Natural Science Foundation of China(21878158 and 21706129)State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021001)Natural Science Foundation of Jiangsu Province(BK20221312).
文摘Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs.
基金financially supported by the National Natural Science Foundation of China(Nos.22108121,21908106 and21878158)Jiangsu Natural Science Foundation(No.BK20190682)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Fuel flexibility is one of the most distinguished advantages of solid oxide fuel cells(SOFCs)over other low-temperature fuel cells.Furthermore,the combination of ammonia fuel and SOFCs technology should be a promising clean energy system after considering the high energy density,easy transportation/storage,matured synthesis technology and carbon-free nature of NH_(3) as well as high efficiency of SOFCs.However,the large-scale applications of direct-ammonia SOFCs(DASOFCs)are strongly limited by the inferior anti-sintering capability and catalytic activity for ammonia decomposition reaction of conventional nickel-based cermet anode.Herein,a slightly ruthenium(Ru)doping in perovskite oxides is proposed to promote the alloy nanoparticle exsolution,enabling better DA-SOFCs with enhanced power outputs and operational stability.After treating Ru-doped Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.75)Ru_(0.05)O_(3-δ) single-phase perovskite in a reducing atmosphere,in addition to the formation of two layered Ruddlesden-Popper perovskites and Pr_(2)O_(3) nanoparticles(the same as the Ru-free counterpart,Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)),the exsolution of CoFeRu-based alloy nanoparticles is remarkably promoted.Such reduced Pr_(0.6)Sr0.4Co_(0.2)Fe_(0.75)Ru_(0.05)O_(3-δ) composite anode shows superior catalytic activity and stability for NH_(3) decomposition reaction as well as anti-sintering capability in DA-SOFCs to those of reduced Pr0.6Sr0.4Co0.2Fe0.8O_(3-δ)due to the facilitated nanoparticle exsolution and stronger nanoparticle/substrate interaction.This work provides a facile and effective strategy to design highly active and durable anodes for DA-SOFCs,promoting large-scale applications of this technology.
基金supported by National Natural Science Foundation of China (No. 51777062)National key research and development program (No. 2018YFB0904200) the Fundamental Research Funds for the Central UniversitiesHunan science and technology project (No. 2017XK2014)
文摘With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stealthily without knowing the full configuration(e.g., network topology) of a power system. In this paper, we present a comprehensive review on false data injection attacks which utilize barrier conditions, blind identification techniques and data driven approaches to overcome limitations of incomplete network information. We also point out future research topics for facilitating the detection and prevention of such false data attacks.
基金The National Key Research and Development Program of China,China(2016YFD0200403)The Graduate Innovation Funding Project of Hebei Province,China(CXZZBS2017059)+1 种基金Scientific Science and Technology Research Projects of Universities in Hebei,China(BJ2018012)Project of Hebei Natural Science Foundation,China(G2018204093).
文摘The measurement of crop nutrition is considerably significant in agricultural practices,especially in the application of mechanized variable rate fertilization.Feature extraction and model building are two important links in crop nutrition measurement by digital image.In this paper,a feature set of fusion multi-colour space in field prototype is extracted and an evaluation approach using stepwise-based ridge regression(SBRR)that uses correlation-based evaluation method is employed.First the image features of three known colour spaces are extracted,meanwhile a new colour space named rgb is constructed according to the characteristics that RGB colour space easily affected by light.Then the SBRR with nested cross validation is used to find the best evaluation model.By performance evaluation,the optimal SBRR model is obtained(R^(2)=0.718 RMSE=5.111).Additionally,compared with two other nutritional evaluation approach named backpropagation artificial neural network(BP-ANN)and k-nearest neighbors(KNN),SBRR achieves better performance in both R^(2) and RMSE.Furthermore the proposed model’s reliability is verified using the image dataset taken from the same wheat field in the next year.The R^(2) and RMSE values are 0.794 and 4.304,respectively.The comparisons and verification show that our proposed SBRR approach can achieve better experimental results and can be considered a reliable and low-cost alternative for estimating the chlorophyll content of wheat leaves in field.