This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rul...This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions...This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions are obtained based on the argument principle.Compound quadrature formulae are used to compute the integrals.An algorithm is proposed to examine the delay-dependent stability of numerical solutions.Several numerical examples are performed to verify the theoretical results.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11471217)
文摘This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
基金supported by the National Natural Science Foundation of China(No.11971303).
文摘This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions are obtained based on the argument principle.Compound quadrature formulae are used to compute the integrals.An algorithm is proposed to examine the delay-dependent stability of numerical solutions.Several numerical examples are performed to verify the theoretical results.