Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 ze...Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts.展开更多
文摘Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts.