期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Bud endodormancy in deciduous fruit trees:advances and prospects 被引量:8
1
作者 Qinsong Yang yuhao gao +3 位作者 Xinyue Wu Takaya Moriguchi Songling Bai Yuanwen Teng 《Horticulture Research》 SCIE 2021年第1期1657-1667,共11页
Bud endodormancy is a complex physiological process that is indispensable for the survival,growth,and development of deciduous perennial plants.The timely release of endodormancy is essential for flowering and fruit p... Bud endodormancy is a complex physiological process that is indispensable for the survival,growth,and development of deciduous perennial plants.The timely release of endodormancy is essential for flowering and fruit production of deciduous fruit trees.A better understanding of the mechanism of endodormancy will be of great help in the artificial regulation of endodormancy to cope with climate change and in creating new cultivars with different chilling requirements.Studies in poplar have clarified the mechanism of vegetative bud endodormancy,but the endodormancy of floral buds in fruit trees needs further study.In this review,we focus on the molecular regulation of endodormancy induction,maintenance and release in floral buds of deciduous fruit trees.We also describe recent advances in quantitative trait loci analysis of chilling requirements in fruit trees.We discuss phytohormones,epigenetic regulation,and the detailed molecular network controlling endodormancy,centered on SHORT VEGETATIVE PHASE(SVP)and Dormancy-associated MADS-box(DAM)genes during endodormancy maintenance and release.Combining previous studies and our observations,we propose a regulatory model for bud endodormancy and offer some perspectives for the future. 展开更多
关键词 RELEASE ADVANCES clarified
下载PDF
High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy 被引量:8
2
作者 yuhao gao Qinsong Yang +8 位作者 Xinhui Yan Xinyue Wu Feng Yang Jianzhao Li Jia Wei Junbei Ni Mudassar Ahmad Songling Bai Yuanwen Teng 《Horticulture Research》 SCIE 2021年第1期2798-2813,共16页
Dormancy-associated MADS-box(DAM)genes serve as crucial regulators of the endodormancy cycle in rosaceous plants.Although pear DAM genes have been identified previously,the lack of a high-quality reference genome and ... Dormancy-associated MADS-box(DAM)genes serve as crucial regulators of the endodormancy cycle in rosaceous plants.Although pear DAM genes have been identified previously,the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes.Additionally,the contribution of other genes to the regulation of endodormancy release remains poorly understood.In this study,a high-quality genome assembly for'Cuiguan'pear(Pyrus pyrifolia),which is a leading cultivar with a low chilling requirement cultivated in China,was constructed using PacBio and Hi-C technologies.Using this genome sequence,we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between'Cuiguan'and the high-chilling-requirement cultivar'Suli'during the dormancy cycle.Using a virus-induced gene silencing system,we determined the repressive effects of DAM genes on bud break.Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of‘Suli'buds during artificial chilling using the new reference genome.Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change. 展开更多
关键词 RELEASE ASSEMBLY finding
下载PDF
Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures 被引量:2
3
作者 Su ZHAO Yunkun DENG +1 位作者 yuhao gao Dengming XlAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第6期39-43,共5页
CF3I is a potential SF6 alternative gas.In order to study the insulation properties and synergistic effects of CF3I/N2 and CF3I/CO2 gas mixtures,two-term approximate Boltzmann equations were used to obtain the ionizat... CF3I is a potential SF6 alternative gas.In order to study the insulation properties and synergistic effects of CF3I/N2 and CF3I/CO2 gas mixtures,two-term approximate Boltzmann equations were used to obtain the ionization coefficient α,attachment coefficient η and the critical equivalent electrical field strength(E/N)(cr).The results show that the(E/N)(cr)of CF3I gas at 300 K is 1.2 times that of SF6 gas,and CF3I/N2 and CF3I/CO2 gas mixtures both have synergistic effect occurred.The synergistic effect coefficient of CF3I/CO2 gas mixture was higher than that of CF3I/N2 gas mixture.But the(E/N)(cr)of CF3I/N2 is higher than that of CF3I/CO2 under the same conditions.When the content of CF3I exceeds 20%,the (E/N)(cr) of CF3I/N2 and CF3I/CO2 gas mixture increase linearly with the increasing of CF3I gas content.The breakdown voltage of CF3I/N2 gas mixture is also higher than that of CF3I/CO2 gas mixture in slightly non-uniform electrical field under power frequency voltage,but the synergistic effect coefficients of the two gas mixtures are basically the same. 展开更多
关键词 Boltzmann equation CF3I gas mixtures synergistic effect
下载PDF
Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice 被引量:3
4
作者 Zhixin Peng Xiaoheng Li +6 位作者 Jun Li Yuan Dong yuhao gao Yajin Liao Meichen Yan Zengqiang Yuan Jinbo Cheng 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第12期1671-1682,共12页
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression.Discs large homolog 1(Dlg1),an adaptor protein,regulates cell polar... Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression.Discs large homolog 1(Dlg1),an adaptor protein,regulates cell polarization and the function of K?channels,which are reported to regulate the activation of microglia.However,little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis.In this study,we found that Dlg1 knockdown suppressed lipopolysaccharide(LPS)-induced inflammation by downregulating the activation of nuclear factor-jB signaling and the mitogen-activated protein kinase pathway in microglia.Moreover,using an inducible Dlg1 microglia-specific knockout(Dlg1flox/flox;CX3CR1CreER)mouse line,we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depressionlike behavior.In summary,our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression. 展开更多
关键词 Dlg1 MICROGLIA NEUROINFLAMMATION DEPRESSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部