期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strong internal electric field enhanced polysulfide trapping and ameliorates redox kinetics for lithium-sulfur battery 被引量:2
1
作者 Bin Yang Jinyi Wang +5 位作者 yuheng qi Daying Guo Xueyu Wang Guoyong Fang Xi’an Chen Shun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期376-383,I0010,共9页
The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorpti... The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries. 展开更多
关键词 INTERLAYER Strong built-in electric field CATALYTIC Shuttle effect Lithiumsulfur battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部