This article presents a high-speed distributed vibration sensing based on Mach-Zehnder-OTDR (optical time-domain reflectometry). Ultra-weak fiber Bragg gratings (UWFBG), whose backward light intensity is 2-4 order...This article presents a high-speed distributed vibration sensing based on Mach-Zehnder-OTDR (optical time-domain reflectometry). Ultra-weak fiber Bragg gratings (UWFBG), whose backward light intensity is 2-4 orders of magnitude higher than that of Rayleigh scattering, are used as the reflection markers. A medium-coherence laser can substitute conventional narrow bandwidth source to achieve an excellent performance of distributed vibration sensing since our unbalanced interferometer matches the interval of UWFBGs. The 3 m of spatial resolution of coherent detection and multiple simultaneous vibration sources locating can be realized based on OTDR. The enhanced signal to noise ratio (SNR) enables fast detection of distributed vibration without averaging. The fastest vibration of 25 kHz and the slowest vibration of 10Hz can be detected with our system successfully, and the linearity is 0.9896 with a maximum deviation of 3.46nε.展开更多
An optical multi-component gas detection system based on the conjugated interferometer (CI) is proposed and experimentally demonstrated. It can realize the concentration detection of mixture gas in the environment. ...An optical multi-component gas detection system based on the conjugated interferometer (CI) is proposed and experimentally demonstrated. It can realize the concentration detection of mixture gas in the environment. The CI can transform the absorption spectrum of the target gases to a conjugated emission spectrum, when combining the CI with the broadband light source, the spectrum of output light matches well with the absorption spectrum of target gases. The CI design for different target gases can be achieved by replacing the kind of target absorbing gas in the CI filter. The traditional fiber gas sensor system requires multiple light sources for detection when there are several kinds of gases, and this problem has been solved by using the CI filter combined with the broadband light source. The experimental results show that the system can detect the concentration of multi-component gases, which are mixed with C2H2 and NH3. Experimental results also show a good concentration sensing linearity.展开更多
基金This work was supported in part by the National Natural Science Foundation of China (Gram No. 61735031), Natural Science Foundation of Hubei Province of China (Grant No. 2018CFA056), and the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (Grant No. 2017-YS-057).
文摘This article presents a high-speed distributed vibration sensing based on Mach-Zehnder-OTDR (optical time-domain reflectometry). Ultra-weak fiber Bragg gratings (UWFBG), whose backward light intensity is 2-4 orders of magnitude higher than that of Rayleigh scattering, are used as the reflection markers. A medium-coherence laser can substitute conventional narrow bandwidth source to achieve an excellent performance of distributed vibration sensing since our unbalanced interferometer matches the interval of UWFBGs. The 3 m of spatial resolution of coherent detection and multiple simultaneous vibration sources locating can be realized based on OTDR. The enhanced signal to noise ratio (SNR) enables fast detection of distributed vibration without averaging. The fastest vibration of 25 kHz and the slowest vibration of 10Hz can be detected with our system successfully, and the linearity is 0.9896 with a maximum deviation of 3.46nε.
基金Acknowledgment This research was supported by the Natural National Science Foundation of China, NSFC (Grant No. 61575149, 61290311), and the Major Project of Hubei Technological Innovation Special Fund (2016AAA008).
文摘An optical multi-component gas detection system based on the conjugated interferometer (CI) is proposed and experimentally demonstrated. It can realize the concentration detection of mixture gas in the environment. The CI can transform the absorption spectrum of the target gases to a conjugated emission spectrum, when combining the CI with the broadband light source, the spectrum of output light matches well with the absorption spectrum of target gases. The CI design for different target gases can be achieved by replacing the kind of target absorbing gas in the CI filter. The traditional fiber gas sensor system requires multiple light sources for detection when there are several kinds of gases, and this problem has been solved by using the CI filter combined with the broadband light source. The experimental results show that the system can detect the concentration of multi-component gases, which are mixed with C2H2 and NH3. Experimental results also show a good concentration sensing linearity.