期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析
1
作者 贾绮玮 钟芊芊 +8 位作者 顾育嘉 陆天麒 李玮 杨帅 朱超宇 胡程翔 李三峰 王跃星 饶玉春 《植物学报》 CAS CSCD 北大核心 2023年第6期882-892,共11页
水稻(Oryza sativa)倒伏是制约其生产的主要因素之一,而茎秆的机械强度影响水稻抗倒伏能力,且与茎秆细胞壁相关组分含量密切相关。通过调控水稻茎秆细胞壁相关组分含量提高水稻抗倒伏能力,是提高水稻产量与品质的有效途径。该研究用籼... 水稻(Oryza sativa)倒伏是制约其生产的主要因素之一,而茎秆的机械强度影响水稻抗倒伏能力,且与茎秆细胞壁相关组分含量密切相关。通过调控水稻茎秆细胞壁相关组分含量提高水稻抗倒伏能力,是提高水稻产量与品质的有效途径。该研究用籼稻品种华占(O.sativa subsp.indica cv.‘HZ’)和粳稻品种热研2号(O.sativa subsp.japonica cv.‘Nekken2’)杂交获得F1代,经连续多代自交得到120个重组自交系(RILs)群体,并以此构建遗传连锁图谱。基于构建的高密度遗传图谱,对水稻茎秆细胞壁中纤维素、半纤维素和木质素含量相关QTLs进行定位,结果共检测到4个与纤维素含量相关的QTLs、12个与半纤维素含量相关的QTLs和8个与木质素含量相关的QTLs。对检测到的QTLs区间进行候选基因分析,共筛选到13个候选基因。利用q RT-PCR检测候选基因的表达水平,结果表明除LOC_Os02g58590和LOC_Os12g41720外,其余候选基因的表达量在双亲间均存在显著差异。研究结果为挖掘调控水稻茎秆机械强度的基因,进而筛选和培育抗倒伏能力强的水稻品种奠定了重要基础。 展开更多
关键词 水稻 茎秆机械强度 QTL定位 候选基因 抗倒伏
原文传递
Power System Flow Adjustment and Sample Generation Based on Deep Reinforcement Learning 被引量:11
2
作者 Shuang Wu Wei Hu +3 位作者 Zongxiang Lu yujia gu Bei Tian Hongqiang Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1115-1127,共13页
With the increasing complexity of power system structures and the increasing penetration of renewable energy,the number of possible power system operation modes increases dramatically.It is difficult to make manual po... With the increasing complexity of power system structures and the increasing penetration of renewable energy,the number of possible power system operation modes increases dramatically.It is difficult to make manual power flow adjustments to establish an initial convergent power flow that is suitable for operation mode analysis.At present,problems of low efficiency and long time consumption are encountered in the formulation of operation modes,resulting in a very limited number of generated operation modes.In this paper,we propose an intelligent power flow adjustment and generation model based on a deep network and reinforcement learning.First,a discriminator is trained to judge the power flow convergence,and the output of this discriminator is used to construct a value function.Then,the reinforcement learning method is adopted to learn a strategy for power flow convergence adjustment.Finally,a large number of convergent power flow samples are generated using the learned adjustment strategy.Compared with the traditional flow adjustment method,the proposed method has significant advantages that the learning of the power flow adjustment strategy does not depend on the parameters of the power system model.Therefore,this strategy can be automatically learned without manual intervention,which allows a large number of different operation modes to be efficiently formulated.The verification results of a case study show that the proposed method can independently learn a power flow adjustment strategy and generate various convergent power flows. 展开更多
关键词 Deep reinforcement learning power flow adjustment system operation mode sample generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部