An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow ne...An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow near the heated surface was made using a microscopic lens system in conjunction with an advanced high-speed camera. The film thickness and film wavelike characteristics under liquid volume flow rates ranged from 2.78×10 -6 m 3 /s to 1.39×10 -5 m 3 /s and surface temperatures between 22℃ and 78.2℃ were examined respectively. The development process of the liquid film on the heated surface was observed. The local mean film thickness, the film wavelike characteristics and the behavior of the bubbles appeared in the liquid film were captured using an image processing technique. It is discovered that there exists a climax of local mean film thickness during the starting process of spray cooling. When the liquid film reaches the dynamic stable state, the dimensionless mean film thickness decreases with the increase of the liquid volume flow rate, and increases with the increase of surface temperature generally. Besides, the volume flow rate has a more significant impact on the wavelength and amplitude of the liquid film compared to the surface temperature.展开更多
Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effect...Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.50906083National Basic Research Program of China under Grant No.2011CB710705
文摘An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow near the heated surface was made using a microscopic lens system in conjunction with an advanced high-speed camera. The film thickness and film wavelike characteristics under liquid volume flow rates ranged from 2.78×10 -6 m 3 /s to 1.39×10 -5 m 3 /s and surface temperatures between 22℃ and 78.2℃ were examined respectively. The development process of the liquid film on the heated surface was observed. The local mean film thickness, the film wavelike characteristics and the behavior of the bubbles appeared in the liquid film were captured using an image processing technique. It is discovered that there exists a climax of local mean film thickness during the starting process of spray cooling. When the liquid film reaches the dynamic stable state, the dimensionless mean film thickness decreases with the increase of the liquid volume flow rate, and increases with the increase of surface temperature generally. Besides, the volume flow rate has a more significant impact on the wavelength and amplitude of the liquid film compared to the surface temperature.
基金supported by National Natural Science Foundation of China (No.50776087).
文摘Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.