期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping
1
作者 yujing du Shiping Wang +6 位作者 Lei Wang Shengye Jin Yifan Zhao Tai Min Zhuangde Jiang Ziyao Zhou Ming Liu 《Nano Research》 SCIE EI CSCD 2022年第3期2626-2633,共8页
§The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way.Recently,we developed a solar control of magnetism,allowing the magnetic moment to b... §The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way.Recently,we developed a solar control of magnetism,allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field,current,or laser.Here,binary and ternary photoactive systems with different photon-to-electron conversions are proposed.The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density(J SC)(20.92 mA·cm^(−2))compared with the binary system(11.94 mA·cm^(−2)).During the sunlight illumination,ferromagnetic resonance(FMR)shift increases by 80%(from 169.52 to 305.48 Oe)attributed to enhanced photo-induced electrons doping,and the variation of saturation magnetization(M S)is also amplified by 14%(from 9.9%to 11.3%).Furthermore,photovoltaic performance analysis and the transient absorption(TA)spectra indicate that the current density plays a major role in visible light manipulating magnetism.These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications. 展开更多
关键词 multiferroic heterostructure magnetoelectric coupling ferromagnetic resonance magnetic anisotropy interface charge doping
原文传递
Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics
2
作者 Zhexi He Yifan Zhao +4 位作者 yujing du Meng Zhao Yuxuan Jiang Ming Liu Ziyao Zhou 《Frontiers of physics》 SCIE 2024年第4期73-79,共7页
Flexible electronics/spintronics attracts researchers’attention for their application potential abroad in wearable devices,healthcare,and other areas.Those devices’performance(speed,energy consumption)is highly depe... Flexible electronics/spintronics attracts researchers’attention for their application potential abroad in wearable devices,healthcare,and other areas.Those devices’performance(speed,energy consumption)is highly dependent on manipulating information bits(spin-orientation in flexible spintronics).In this work,we established an organic photovoltaic(OPV)/ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy(PMA).Under sunlight illumination,the photoelectrons generated from the OPV layer transfer into the PMA heterostructure,then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly.The coercive field(Hc)reduces from 800 Oe to 500 Oe at its maximum,and the magnetization can be switched up and down reversibly.The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications.Lastly,the voltage output of sunlight-driven PMA is achieved in our prototype device,exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption. 展开更多
关键词 interfacial magnetoelectric coupling perpendicular magnetic anisotropy deterministic magnetization reversal photovoltaic control of magnetism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部