Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes....Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes.Here,we report a novel method to prepare Mo_(2)C MXene from Mo_(2)Ga_(2)C by the hydrothermal etching of alkali solutions.Highly pure Mo_(2)C MXene was successfully synthesized by the etching of NaOH,while the etchings of LiOH and KOH were failed.The concentration of NaOH,temperature,and time strongly affect the purity of as-prepared MXene.Pure Mo_(2)C MXene could be synthesized by the etching of 20 M NaOH at 180 for 24 h.After℃intercalation by hexadecyl trimethyl ammonium bromide at 90 for 96 h,few℃-layer Mo_(2)C MXene was obtained.The Mo_(2)C MXene made by NaOH etching after intercalation exhibited excellent performance as anode of lithium-ion battery,compared with general Mo_(2)C MXene made by HF etching and the Mo_(2)C MXene reported in literature.The final discharge specific capacity was 266.73 mAh·g^(−1)at 0.8 A·g^(−1),which is 52%higher than that Mo_(2)C made by HF etching(175.77 mAh·g^(−1)).This is because Mo_(2)C MXene made by NaOH etching has lager specific surface area,lower resistance,and pure O/OH termination without acid anion termination.This is the first report to make Mo_(2)C MXene by alkali etching and the samples made by this method exhibited significantly better electrochemical performance than the samples made by general HF etching.展开更多
基金supported by the National Natural Science Foundation of China(52275187,52202364)Natural Science Foundation of Henan(232300421135)Fundamental Research Funds for the Universities of Henan Province(NSFRF200101).
文摘Two-dimensional MXenes are generally prepared by the etching of acid solutions.The as-synthesized MXenes are terminated by acid group anions(F^(–),Cl^(–),etc.),which affect the electrochemical performance of MXenes.Here,we report a novel method to prepare Mo_(2)C MXene from Mo_(2)Ga_(2)C by the hydrothermal etching of alkali solutions.Highly pure Mo_(2)C MXene was successfully synthesized by the etching of NaOH,while the etchings of LiOH and KOH were failed.The concentration of NaOH,temperature,and time strongly affect the purity of as-prepared MXene.Pure Mo_(2)C MXene could be synthesized by the etching of 20 M NaOH at 180 for 24 h.After℃intercalation by hexadecyl trimethyl ammonium bromide at 90 for 96 h,few℃-layer Mo_(2)C MXene was obtained.The Mo_(2)C MXene made by NaOH etching after intercalation exhibited excellent performance as anode of lithium-ion battery,compared with general Mo_(2)C MXene made by HF etching and the Mo_(2)C MXene reported in literature.The final discharge specific capacity was 266.73 mAh·g^(−1)at 0.8 A·g^(−1),which is 52%higher than that Mo_(2)C made by HF etching(175.77 mAh·g^(−1)).This is because Mo_(2)C MXene made by NaOH etching has lager specific surface area,lower resistance,and pure O/OH termination without acid anion termination.This is the first report to make Mo_(2)C MXene by alkali etching and the samples made by this method exhibited significantly better electrochemical performance than the samples made by general HF etching.