The purpose of this study is to examine the structure and the temperature-responsive anion exchange property of amino-functionalized mesoporous silica coated with temperature-responsive copolymer, poly(N-isopropylacry...The purpose of this study is to examine the structure and the temperature-responsive anion exchange property of amino-functionalized mesoporous silica coated with temperature-responsive copolymer, poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-Am)). For this purpose, the composites which contained 0, 10, or 20 wt% of Am were synthesized. From the TG results, it was found that the amounts of copolymer immobilized on the mesoporous silica were 1.6 - 2.6 wt%. XRD patterns revealed that the structures of composites were hexagonal and almost the same as that of original mesoporous silica without polymer. At low temperature the methyl orange (MO) anions adsorbed and desorbed reversibly with changing pH of the solution, while at high temperature the MO anions did not. This temperature, at which the amount of adsorbed MO anions changed considerably, shifted to the higher temperature side with increasing the amount of added Am.展开更多
文摘The purpose of this study is to examine the structure and the temperature-responsive anion exchange property of amino-functionalized mesoporous silica coated with temperature-responsive copolymer, poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-Am)). For this purpose, the composites which contained 0, 10, or 20 wt% of Am were synthesized. From the TG results, it was found that the amounts of copolymer immobilized on the mesoporous silica were 1.6 - 2.6 wt%. XRD patterns revealed that the structures of composites were hexagonal and almost the same as that of original mesoporous silica without polymer. At low temperature the methyl orange (MO) anions adsorbed and desorbed reversibly with changing pH of the solution, while at high temperature the MO anions did not. This temperature, at which the amount of adsorbed MO anions changed considerably, shifted to the higher temperature side with increasing the amount of added Am.